A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth

Organ Model: Lung (Alveolus)

Application: Infectious Disease

Abstract: We establish a murine lung-on-chip infection model and use time-lapse imaging to reveal the dynamics of host-Mycobacterium tuberculosis interactions at an air-liquid interface with a spatiotemporal resolution unattainable in animal models and to probe the direct role of pulmonary surfactant in early infection. Surfactant deficiency results in rapid and uncontrolled bacterial growth in both macrophages and alveolar epithelial cells. In contrast, under normal surfactant levels, a significant fraction of intracellular bacteria are non-growing. The surfactant-deficient phenotype is rescued by exogenous addition of surfactant replacement formulations, which have no effect on bacterial viability in the absence of host cells. Surfactant partially removes virulence-associated lipids and proteins from the bacterial cell surface. Consistent with this mechanism, the attenuation of bacteria lacking the ESX-1 secretion system is independent of surfactant levels. These findings may partly explain why smokers and elderly persons with compromised surfactant function are at increased risk of developing active tuberculosis.

A Micro-Engineered Airway Lung-Chip Models Key Features of Viral-Induced Exacerbation of Asthma

Abstract

Viral-induced exacerbation of asthma remain a major cause of hospitalization and mortality. New human relevant models of the airways are urgently needed to understand how respiratory infections may trigger asthma attacks, and to advance treatment development. Here, we describe a new human relevant model of rhinovirus-induced asthma exacerbation that recapitulates viral infection of asthmatic airway epithelium, neutrophil transepithelial migration, and enables evaluation of immunomodulatory therapy. Specifically, a micro-engineered model of fully differentiated human mucociliary airway epithelium was stimulated with IL-13 to induce a Th2-type asthmatic phenotype and infected with live human rhinovirus 16 (HRV16) to reproduce key features of viral-induced asthma exacerbation.

We observed that the infection with HRV16 replicated key hallmarks of the cytopathology and inflammatory responses observed in human airways. Generation of a Th2 microenvironment through exogenous IL-13 stimulation induced features of asthmatics airways, including goblet cell hyperplasia, reduction of cilia beating frequency, and endothelial activation, but did not alter rhinovirus infectivity or replication. High resolution kinetic analysis of secreted inflammatory markers revealed that IL-13 treatment altered the IL-6, IFN-λ1, and CXCL10 secretion in response to HRV16. Neutrophil transepithelial migration was greatest when viral infection was combined with IL-13 treatment, while treatment with MK-7123, a CXCR2 antagonist, reduced neutrophil diapedesis in all conditions.

In conclusion, our micro-engineered Airway Lung-Chip provides a novel human-relevant platform for exploring the complex mechanisms underlying viral-induced asthma exacerbation. Our data suggest that IL-13 may impair the hosts’ ability to mount an appropriate and coordinated immune response to rhinovirus infection. We also show that the Airway Lung-Chip can be used to assess the efficacy of modulators of the immune response.

AAV-mediated gene therapy targeting TRPV4 mechano- transduction for inhibition of pulmonary vascular leakage

Organ Model: Lung (Alveolus)

Applications: AAV

Abstract: Enhanced vascular permeability in the lungs can lead to pulmonary edema, impaired gas exchange, and ultimately respiratory failure. While oxygen delivery, mechanical ventilation, and pressure-reducing medications help alleviate these symptoms, they do not treat the underlying disease. Mechanical activation of transient receptor potential vanilloid 4 (TRPV4) ion channels contributes to the development of pulmonary vascular disease, and overexpression of the high homology (HH) domain of the TRPV4-associated transmembrane protein CD98 has been shown to inhibit this pathway. Here, we describe the development of an adeno-associated virus (AAV) vector encoding the CD98 HH domain in which the AAV serotypes and promoters have been optimized for efficient and specific delivery to pulmonary cells. AAV-mediated gene delivery of the CD98 HH domain inhibited TRPV4 mechanotransduction in a specific manner and protected against pulmonary vascular leakage in a human lung Alveolus-on-a-Chip model. As AAV has been used clinically to deliver other gene therapies, these data raise the possibility of using this type of targeted approach to develop mechanotherapeutics.

Reconstituting Organ-Level Lung Functions on a Chip

Organ Model: Lung (Alveolus)

Application: Immunology & Inflammation

Abstract: Here, we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung. This bioinspired microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines introduced into the alveolar space. In nanotoxicology studies, this lung mimic revealed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances epithelial and endothelial uptake of nanoparticulates and stimulates their transport into the underlying microvascular channel. Similar effects of physiological breathing on nanoparticle absorption are observed in whole mouse lung. Mechanically active “organ-on-a-chip” microdevices that reconstitute tissue-tissue interfaces critical to organ function may therefore expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.