Investigating the inflammatory process


The inflammatory process remains poorly understood

Inflammation plays a role in many prominent diseases, including seven of the top ten leading causes of mortality in the developed world. However, the mechanisms of human inflammation remain poorly understood due to the challenge of modeling multi-factorial diseases in vitro and the fundamental differences in immune response between animals and humans. More human-relevant models of inflammation are needed to better understand and develop treatments for inflammatory diseases such as Alzheimer’s, inflammatory bowel disease (IBD), or non-alcoholic steatohepatitis (NASH).

How we can Help

Explore mechanisms of inflammation with Organ-on-a-Chip technology

Organ-on-a-Chip technology can be used to build more human-relevant models of inflammation, allowing researchers to incorporate the cellular diversity seen in vivo into a tissue-specific microenvironment that more closely emulates the complex cell-cell interactions involved in inflammation. The modularity of Organ-Chip models allows researchers to precisely control and study the individual contributions of various factors in the inflammatory process, including inflammatory cytokines, immune response, cell-cell interactions, and organ-relevant mechanical forces.


Advance your studies of colon inflammation by leveraging Organ-on-a-Chip and organoids technology

The development of effective treatments for IBD and other inflammatory diseases of the intestine has been limited by the shortcomings of conventional models—cell lines of cancerous origin with limited cellular complexity or animal models with species differences in immune response. The Colon Intestine-Chip can be used to model key mechanisms of colon inflammation in a concentration-, time-, and donor-dependent manner and conduct efficacy studies of anti-inflammatory drug candidates to prevent or treat cytokine-mediated inflammation and barrier disruption.


The most comprehensive in vitro model of the human neurovascular unit to study mechanisms of neuroinflammation and investigate the safety and efficacy of therapeutics

Though animal models have yielded many insights into human neurophysiology, species differences have limited successful translation of neurodegenerative therapies to the clinic. Even advanced in vitro models such as brain organoids typically lack resident immune cells, media flow, and vasculature, critical for studying disease impact on the blood-brain barrier. The Brain-Chip incorporates microglia, essential for modeling neuroinflammation, and also contains both the neuronal compartment and brain microvascular endothelial-like cells, so researchers can study the effect of neuroinflammation and drug candidates across the entire neurovascular unit.

How Organ-Chips are being used

We have developed multiple organ models that can be used to study aspects of inflammation. The Colon Intestine-Chip has been applied to model cytokine-mediated barrier disruption, part of the pathogenesis of IBD. Administering IFNγ, an inflammatory stimulus, resulted in an increase in permeability, degeneration of morphology, apoptosis, proinflammatory cytokine secretion, and significant enrichment of gene pathways related to inflammation and apoptosis.

The Brain-Chip has been applied to model key features of neuroinflammation and its effect across the neurovascular unit. Exposure to TNF-α resulted in glial activation, proinflammatory cytokine secretion, neuronal loss, disruption of barrier integrity, and significant enrichment of inflammatory gene pathways.

A drug efficacy study was conducted with minocycline, an anti-inflammatory capable of crossing the BBB. Vascular administration of minocycline reduced the inflammatory response and proinflammatory cytokine secretion, as well as helped maintain barrier integrity.

Taken together, this shows the potential for Organ-Chips to be used in studying mechanisms of neuroinflammation and drug efficacy.

Our Offering

Unravel mechanisms of human inflammation across multiple organ models

Whether you are looking to study inflammation of the brain, intestine, or other organs, you can improve the human relevance of your research with Emulate Organ-Chips.


Human-relevant healthy organ model functionality

Recreate diverse features of inflammation

Investigate role of individual inflammatory factors

Assess efficacy of anti-inflammatory drug candidates

Supported Organ Models


Research mechanisms of neuroinflammation and evaluate the effect of therapeutics in a comprehensive model of the neurovascular unit.

Colon Intestine-Chip

Investigate mechanisms of colon inflammation and barrier disruption and evaluate the efficacy of anti-inflammatory drug candidates in an organoid-based model.