Organ Model: Lung (Alveolus)
Applications: AAV
Abstract: Enhanced vascular permeability in the lungs can lead to pulmonary edema, impaired gas exchange, and ultimately respiratory failure. While oxygen delivery, mechanical ventilation, and pressure-reducing medications help alleviate these symptoms, they do not treat the underlying disease. Mechanical activation of transient receptor potential vanilloid 4 (TRPV4) ion channels contributes to the development of pulmonary vascular disease, and overexpression of the high homology (HH) domain of the TRPV4-associated transmembrane protein CD98 has been shown to inhibit this pathway. Here, we describe the development of an adeno-associated virus (AAV) vector encoding the CD98 HH domain in which the AAV serotypes and promoters have been optimized for efficient and specific delivery to pulmonary cells. AAV-mediated gene delivery of the CD98 HH domain inhibited TRPV4 mechanotransduction in a specific manner and protected against pulmonary vascular leakage in a human lung Alveolus-on-a-Chip model. As AAV has been used clinically to deliver other gene therapies, these data raise the possibility of using this type of targeted approach to develop mechanotherapeutics.