Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 1 of 65

Chip-R1 Basic Research Kit Protocol

EP233 Rev. A

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 2 of 65

Chip-R1 Basic Research Kit Protocol

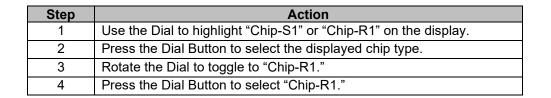
Overview

Introduction

This protocol describes the general steps for using the Emulate Chip-R1 Basic Research Kit. For instructions on how to use the Chip-S1 Basic Research Kit, please see EP223.

CAUTION




Extreme consideration must be taken when using the Emulate Chip with a Zoë. The consumable type must be configured on the UI screen according to the chip being used (Chip-S1 or Chip-R1). This setting impacts the Prime, Regulate, and Flow parameters for the chip. A mismatch between UI setting and the physical consumable can lead to incorrect flow and instrument failure.

Chip-R1 can only be used with Pod-2. Chip-S1 can only be used with Pod-1.

To use Chip-R1 on Zoë-CM1, ensure the firmware is on v1.2.4 or above To use Chip-R1 on Zoë-CM2, ensure the firmware is on v1.4.5 or above*

Firmware updates can be performed through Utility Hub on the Emulate website. *If your Zoë-CM2 is on v1.3.0 or below, please contact Emulate Support.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 3 of 65

In this protocol

Topic	See Page
Part I: Optimization of the Culture Environment	4
Part II: Experimental Overview	13
Part III: Equipment and Materials Provided	15
Part IV: Equipment and Materials Required	16
Part V: Chip Handling Techniques	18
Part VI: Inspecting Chips for Bubbles Throughout the	21
Experiment	
Part VII: Basic Research Kit Protocol	25
Part VIII: Useful Protocols and References	63

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 4 of 65

Part I: Optimization of the Culture Environment

Part I Overview

Introduction

This section describes the key areas of focus for optimizing the culture environment.

Contents

Topic	See Page
Optimization Overview	5
Parameters Typically Optimized	6

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 5 of 65

Optimization Overview

Overview

Introduction

When developing new Organ-Chip models, several culture parameters should be considered, as they provide important information about cell morphology, viability, and function.

Defining Successful Criteria

Users should define the essential criteria for successfully culturing specific cell types, and they should choose readouts that accurately assess the phenotypes of interest. These readouts are organ-specific and will help identify the best conditions for culturing cells on chips.

Examples of Successful Criteria

Some examples of success criteria parameters are:

- A. In vivo-relevant cell morphology
- B. Expression pattern of specific genes by RNA or protein by western blot or immunofluorescence staining
- C. Cell functionality (cell-type-dependent)
- D. Permeability values in acceptable range for specific cells and tracer
- E. Correct cell polarization according to in vivo findings

Example: Bile Canaliculi Network

Both albumin secretion by effluent analysis and live staining of the bile canaliculi network allow users to assess hepatocyte-specific functionality and confirm polarization.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 6 of 65

Parameters Typically Optimized

Overview

Introduction

A brief description of the parameters that are typically optimized is provided below.

Contents

Topic	See Page
Cells	7
Extracellular Matrix (ECM)	9
Media	10
Mechanical Forces	11

TITLE Chip D4 Boois Descareh Kit Drotocol	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 7 of 65

Cells

Overview

Users can apply cell types that they have previously used in their research, such as:

- Cell lines
- Primary cells
- Induced Pluripotent Stem Cells (iPSCs)
- Organoids

Organoids

Organoids complement Organ-on-a-Chip technology by providing a quality source of human cells containing the relevant types from a specific tissue at the appropriate ratios; furthermore, they can be isolated from patients with or without disease. Organ-Chips can be populated with either biopsy-derived or stem cell (iPSC)-derived organoids.

Variability

When comparing phenotypes across multiple donors, users should keep in mind the inter-subject variability that is expected from human or patient-derived samples. Features such as age, lifestyle, and health status can play a vital role in the cells' proliferation and differentiation capacities.

Key Parameters

When culturing multiple cell types on a chip, the key cell-related parameters that users must optimize are:

- A. Seeding Density
- B. Seeding Order

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 8 of 65

Cells, Continued

Parameter 1: Seeding Density Users must empirically determine the optimal seeding density for each cell type, taking into consideration the cells' size and proliferation rate. The table below shows optimal seeding densities for several organ models.

Starting Guidance:

Model	Cell Type	Cell Density for Seeding Chip
Liver-Chip (Quad-Culture)	Primary Human Hepatocyte	2.8 x 10 ⁶ cells / mL
	Primary Liver Sinusoidal	4.5 x 10 ⁶ cells / mL
	Endothelial Cells	
	Kupffer Cells	3 x 10 ⁶ cells / mL
	Stellate Cells	0.15 x 10 ⁶ cells / mL
Kidney-Chip	Kidney PT Epithelial Cells	1 x 10 ⁶ cells / mL
	Kidney endothelial cells	2-4 x 10 ⁶ cells / mL

Parameter 2: Seeding Order

Optimal seeding order depends upon the specific cell type's requirement, as some cells benefit from a period of on-chip monoculture. For example, in the Liver-Chip for Chip-R1, the primary hepatocytes are first seeded in the top channel, and the liver sinusoidal endothelial cells (LSECs) are seeded in the bottom channel the following day to allow for hepatocyte stabilization.

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 9 of 65

Extracellular Matrix (ECM)

Overview

An Extracellular Matrix (ECM) is required to ensure optimal cell performance within the Human Emulation System. The ECM is a thin layer of extracellular matrix proteins that provides a scaffold, anchoring the cells to the culture surface while regulating a cell's dynamic behavior.

Starting ECM Optimization

Users can either start with an ECM they have used previously, or they can select the appropriate ECM based on published *in vitro* or *in vivo* data. Once an ECM is selected, it is recommended that users optimize the specific ECM components and concentration that best support the viability, morphology, and function of the cells.

Note: Using an unoptimized ECM will lead to cell loss when flow is initiated, poor cell morphology, uneven coverage of the chip channels, and poor functionality.

ECM Optimization Steps

Typically, users can optimize the ECM conditions through the following steps:

Step	Action
1	Select one to three of the most relevant ECM types.
2	Choose two concentrations—one high and one low—to test.
3	Make different combinations (see table below for example).
4	Select optimal ECM that supports cell morphology and function.

ECM Type and Test Conditions

ECM Type	Coll	agen	Fibro	nectin	Mati	rigel
Concentration	High	Low	High	Low	High	Low
Test condition 1	✓					
Test condition 2	✓		✓			
Test condition 3	✓		✓		✓	
Test condition 4	✓			✓		✓
Test condition 5		✓				
Test condition 6		✓		✓		
Test condition 7		✓		✓		✓

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 10 of 65

Media

Overview

Since the Chip-R1 experiences laminar flow, its top and bottom channels are fluidically independent. Selecting an optimal cell culture medium for each channel is crucial for a successful chip culture.

Getting Started Optimizing Media

To start, users can choose medium conditions for each channel based on what will work for each cell type. It is important to confirm that all cell types are viable and exhibit the expected phenotypes for the chosen media combination. This will help to prevent specific media components from interfering with cell performance in the adjacent channel (e.g., retinoic acid effects on proliferation and differentiation of multiple cell types).

In these cases, users need to optimize the best medium condition to support cells in the top and bottom channels simultaneously. Typically, users can:

- Test 1:1 mixture of two different medium conditions.
- Adjust the concentration of medium supplements (e.g., growth factors for specific cell type) to find an optimal culture medium condition.

Media Optimization for ALI Models

For models that require Air-Liquid Interface (ALI) culture, such as the Lung-Chip, only one medium composition provides nutrients for cells in both channels (e.g., medium on the vascular channel for Lung-Chip). Consequently, it is essential for successful ALI co-cultures to determine the specific medium composition that enables viability and proper phenotype of all cells on the chip.

Note: Media Storage and Preparation

Users should follow instructions from individual media suppliers for proper storage and preparation. Typically, it is recommended to first prepare 500 mL of base media. Afterwards, users should add the necessary supplements and prepare 50 mL of complete media for short-term use.

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
Chip-N i basic Nesearch Nit Frotocol	Date 26-SEP-2024	Page 11 of 65

Mechanical Forces

Overview

As media flow through the chip, cells are exposed to mechanical forces via shear stress. The exact level of shear stress is determined by the flow rate and the channel dimensions. The flow rates for each channel can be independently set between 0–1000 μL / h for the top channel and 0–2000 μL / h for the bottom channel. (For most organ models, a flow rate between 20–200 μL / h is ideal). An increase in flow rate will cause an increase in the shear forces exerted on the cell monolayer.

Stretch

Chip-R1 is NOT compatible with stretch. For models requiring stretch, please refer to the Chip-S1 protocols.

Optimizing Time

Users should optimize the timing for introducing dynamic culture conditions. In some cases, flow can be initiated soon after cell attachment; in others, it may only be initiated after two days in culture.

TITLE Chin D4 Pagia Daggarah Kit Drotocal	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 12 of 65

Mechanical Forces, Continued

Examples of Key Parameters

Key experimental parameters for an example Organ-Chip model are listed below:

Parameters	Liver Quad-Culture	
ECM (top channel)	Collagen I (100 µg / mL) and	
	Fibronectin (25 μg / mL)	
ECM (bottom channel)	Collagen I (100 µg / mL) and	
	Fibronectin (25 μg / mL)	
Cell type and density in top channel	Hepatocytes:	
	2.8 x 10 ⁶ cells / mL	
Cell type and density in bottom channel	Liver sinusoidal endothelial cells	
	(LSEC):	
	4.5 x 10 ⁶ cells / mL	
	Stellate cells:	
	0.15 x 10 ⁶ cells / mL	
	Kupffer cells:	
	3 x 10 ⁶ cells / mL	
Flow rate	30 μL / h	
Cell culture medium for top channel	Hepatocyte culture medium	
Cell culture medium for bottom channel	1:1 mixture of hepatocyte culture	
	medium and LSEC culture medium	
	omitting dexamethasone	
Timeline	Day -1 (coating), Day 0 (hepatocyte	
	seeding and overlay), Day 1 (bottom	
	channel cell seeding, Chips to Zoë)	

TITLE

Chip-R1 Basic Research Kit Protocol

Chip-R1 Basic Research Kit Protocol

Date
26-SEP-2024

13 of 65

Part II: Experimental Overview

Part II Overview

Introduction

This section gives an overview of the experimental workflow.

Day -X: Reagent Preparation

• Prepare and aliquot reagents (media supplements, ECM, etc.)

Day -X to 0: Prepare cells for chip culture as needed

A Cell lines and primary cells: Thaw and expand cells

B iPSCs: Thaw, expand, and differentiate iPSCs

C Tissue biopsy: Prepare spheroid culture from biopsy tissue and expand culture

D Terminally differentiated cells: Thaw cells and seed directly on chips

Day -1: Chip Preparation

- Unpack and label chips
- Prepare ECM solution
- Coat chips with ECM

Day 0: Seed Cells on Chips

- Wash chips
- Prepare cells for seeding on chip
- Seed cells into bottom channel
- Seed cells into top channel
- Seed a well plate (quality control of cell morphology)
- Gravity wash chips (2-18 hours post-seeding)

Day 1: Chips to Pods and Pods to Zoë

- Prepare complete culture media for connection and aliquot
- Wash chips
- Gas equilibration of media using Steriflip® workflow
- Prime Pods
- Connect chips to Pods
- Connect Pods to Zoë
- Run 2x Regulate Cycles with freshly equilibrated media for each run
- Begin experimental flow

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 14 of 65

Part II Overview, Continued

Day 2+: Organ-Chip Culture Maintaining and Sampling

- Inspect chips for bubbles and cell morphology
- Via wash
- Media replenishment
- Effluent sampling

Day X: Chip Termination

• Terminate Organ-Chip culture and process for various downstream analyses

TITLE Chin D4 Pagia Daggarah Kit Dratagal	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 15 of 65

Part III: Equipment and Materials Provided

Part III Overview

Requirement

Ensure all equipment, materials, and reagents provided with the system are accessible prior to beginning each experiment.

Provided Equipment and Materials

Equipment and materials provided with the Basic Research Kit (12-pack product code: BRK-R1-12, 24-pack product code: BRK-R1-24) provided below:

Equipment	Description	Quantity – 12-pack	Quantity – 24-pack
Chip-R1™ Rigid Chip	Organ-chip consumable	12	24
Pod-2™ Portable Modules	Provides reservoirs for media	12	24
Steriflip®-HV Filters	0.45 µm PVDF filter sterile for Gas Equilibration of Media	6	8

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 16 of 65

Part IV: Equipment and Materials Required

Part IV Overview

Requirement

Ensure all required equipment, materials, and reagents are accessible prior to beginning each experiment.

Note on Catalog Numbers

Exact catalog numbers are not provided for some required materials, as several brands and models are acceptable.

Required Materials

A list of equipment and materials needed for this protocol in addition to the Emulate Basic Research Kit is provided below:

Equipment	Description	Supplier	Catalog Number
Square Cell Culture Dish (120 x 120 mm)	Sterile, 1 per 6 chips	VWR	82051-068
Handheld vacuum aspirator	-	Corning	4930
Aspirating pipettes	2 mL, polystyrene, individually wrapped	Corning / Falcon	357558
Aspirating tips	Sterile (autoclaved)	-	-
Serological pipettes	2 mL, 5 mL, 10 mL, and 25 mL low endotoxin, sterile	-	-
Pipette	P20, P200, and P1000	-	-
Pipette tips	P20, P200, and P1000 sterile, filter, low- adhesion	-	-
Conical tubes	15 mL and 50 mL polypropylene, sterile	-	-
Eppendorf tubes	1.5 mL, sterile	-	-
Microscope (with camera)	For bright-field imaging	-	-
Hemocytometer	-	-	-
Manual counter	-	-	-
Water bath (or beads)	Set to 37°C		

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 17 of 65

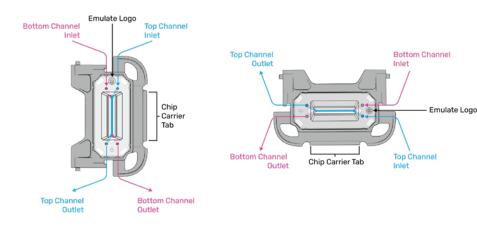
			1
	-70 kPa minimum		
Vacuum Set-up	achievable	-	-
	pressure		
T25 Flask -	-	-	-
T75 Flask -	-	1	-
Ice bucket -	-	-	-
Parafilm® -	-	-	-
70% ethanol and	For surface		
wipes	sterilization	-	-
Trypan blue (0.4% solution	Sigma	93595
Dissociation			
Reagent (e.g.,	For Truncin		
I I I I I I I I I I I I I I I I I I I	For Trypsin EDTA:	Ciarra	T3924
l solution		Sigma	13924
Accutase,	0.05% trypsin		
TrypLE)			
Cell culture			
medium for cell -	-	-	-
type 1 (epithelial)			
Cell culture			
medium for cell			
type 2	-	-	-
(endothelial)			
ECM (dependent			
on cell type)	-	-	-
Antibacterial			
reagent (e.g.,	10,000 U / mL; 10	Ciama	D4222
Penicillin-	mg / mL	Sigma	P4333
streptomycin			
Fetal bovine	Sterile heat-	Ciama	E4125 or E9217
serum (FBS) i	inactivated	Sigma	F4135 or F8317
	iliactivateu		

Notes on Fungin™

- To prevent fungal contamination, add 0.1% of Fungin[™] to any Organ-Chip culture when necessary.
- This antimycotic compound kills yeasts, molds, and fungi by disrupting ionic exchange through the cell membrane. This reagent has no effect on eukaryotic cell viability or function due to its mechanism of action.

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 18 of 65

Part V: Chip Handling Techniques


Part V Overview

Requirements

- Always work with chips in a sterile environment, such as the biosafety cabinet (BSC).
- Always avoid touching the chip directly. Handle the chip carrier only by the sides, or by the tab, with gloves.
- Never remove the chip from the chip carrier during an experiment.

Possible Chip Orientations

The two possible chip orientations are displayed below:

Orientation A (Left)	Orientation B (Right)
In this orientation, the bottom channel	In this orientation, the bottom channel
inlet will be on the top left of the chip,	inlet will be on the top right of the chip,
while the top channel inlet will be on	while the top channel inlet will be on
the top right of the chip. Conversely,	the bottom right of the chip.
the bottom channel outlet will be on the	Conversely, the bottom channel outlet
bottom right of the chip, while the top	will be on the bottom left of the chip,
channel outlet will be on the bottom left	while the top channel outlet will be on
of the chip.	the top left of the chip.

Pipetting

When pipetting to fill each channel, a volume of 50 μ L is generally used for the top channel, and 20 μ L is used for the bottom channel. These volumes allow for simple pipetting and a slight overfill to avoid bubbles or dry channels. All wash steps, unless otherwise stated, are performed using 200 μ L of the specific wash solution.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 19 of 65

Pipetting: Range of Acceptable Volumes

While 50 μ L (top channel) and 20 μ L (bottom channel) are the standard volumes used throughout the protocol, there can be some flexibility in the actual volumes used:

Channel	Dimensions
Top Channel	35–50 μL
Bottom Channel	15–20 μL

Channel Membrane and Dimensions

Top Channel		
Width x Height Dimensions 1000 µm x 1000 µm		
Area	25.66 mm ²	
Volume	24.52 μL	
Imaging distance from the bottom of	172 μm	
the chip to the top of the membrane		
950um 1000um 1050um		
	Channel	
Width x Height Dimensions	1050 μm x 100 μm	
Area 29.46 mm ²		
Volume 2.97 μL		
Membrane		
Pore diameter	3.0 µm	
Pore spacing Random distribution (Track-etc membrane)		
Porosity 2.8 %		
Thickness 22 µm		
Co-Culture Region		
Area	16.56mm ²	

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 20 of 65

Part V Overview, Continued

Pipetting Solution into Channels

Use a P200 pipette with a sterile pipette tip to add solution directly to the channels of the chip as well as to coat, wash, and seed cells prior to connecting the chip to flow on Zoë. To introduce solution to the channels, place the pipette tip perpendicular to chip channel inlet, ensuring that the tip is securely in the port, and steadily dispense liquid through the channel.

Note: Always introduce liquid to the bottom channel before pipetting into the top channel.

Step	Action
1	Take a P200 pipette with a sterile pipette tip and collect the solution to
	be added to the Organ-Chip.
2	Place the pipette tip perpendicular to the chip channel inlet, ensuring
	that the tip is securely in the port.
3	Steadily dispense the liquid through the channel.

CAUTION

There is additional resistance in the bottom channel of Chip-R1 compared to Chip-S1. Therefore, when pipetting into the bottom channel, depress the plunger fully and hold the pipette at the port for several seconds to allow the full volume to be pipetted through the bottom channel.

When aspirating from the gasket window, take precaution NOT to make contact with the channel feature itself. The top gas exchanger film can easily be punctured by a pipette tip.

Note on Aspiration: Careful consideration must be given to aspiration steps during Chip-R1 seeding. Residual liquid over the outlet ports may be a contributing factor to the formation of cell distribution gradients when handling the chips post-seeding.

Suggestions for Aspiration and avoiding gradients:

- 1. Aspirate excessive volume from the outlets with a vacuum aspirator.
- 2. Do not work directly over the port, as this may cause the cell medium to aspirate from the channel itself.
- 3. Do not drag the aspirator tip across the top of the chip, as this can cause scratches on the top layer.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 21 of 65

Part VI: Inspecting Chips for Bubbles Throughout the Experiment

Part VI Overview

Workflow steps that can create bubbles downstream and damage Zoë Culture Module

The table of contents below contains critical workflow steps that can impact bubble formation downstream and cause damage to Zoë Culture Module. These steps are identified on their respective pages with **CAUTION** statements.

Topic	See Page
Gas Equilibration of Media	48
Prime Pods	50
Media Replenishment	58

Potential Bubble Issues and Solutions

Issue	Section	Step	Recommendation
Bubbles are present in chip ports or channel (Figure 1)	Any step related to chip handling, such as Chip washing, ECM coating, and cell seeding	Any step related to chip handling, such as Chip washing, ECM coating, and cell seeding	Wash the channel with the appropriate solution until all bubbles have been removed. If bubbles persist, it may be helpful to aspirate the channel dry and slowly re-introduce solution.
Bubbles are in the ports upon introduction of media into the chip	Any step related to chip handling, such as Chip washing, ECM coating, and cell seeding	Any step related to chip handling, such as Chip washing, ECM coating, and cell seeding	Bubbles could get trapped at the ports. Dislodge bubbles using the pipette tip or aspirate the channels and reintroduce appropriate solution.
Media takes too long to pass through Steriflip®	Chips to Pods and Pods to Zoë	Gas Equilibration of Media	Vacuum pressure is not reaching -70 kPa. Find and use an alternative vacuum source with the appropriate pressure.
Pods do not prime	Chips to Pods and Pods to Zoë	Prime Pods	If Pods do not prime on the first attempt, ensure that medium covers all Pod Vias, and run the Prime Cycle again. If the problems persist, record the Pod lot number, and replace it with a new Pod.
Screen is frozen or unresponsive	Chips to Pods and Pods to Zoë; Maintaining and Sampling	Any step related to Organ-Chip culture on Zoë	Power off Zoë and turn it on again. If the problem persists, contact our support team.

TITLE Chin D4 Basis Descareh Kit Dretseel	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 22 of 65

Pods are stuck in Zoë	Maintaining and Sampling	Any step related to Organ-Chip culture on Zoë	The Pod lid is not secured. Try wiggling the tray to the right and left as you slide it out while keeping it level. If the problem persists, contact our support team.
Pods are not flowing properly or evenly/ Bubbles observed in chip	Maintaining and Sampling	Any step related to Organ-Chip culture on Zoë	There is inherent variability with Zoë; however, large fluctuations and major flow issues primarily result from bubbles. To remove bubbles and allow for flow, remove the chip from the Pod, flush the chip with media, reprime the Pod with media, and reconnect the chip to the Pod.

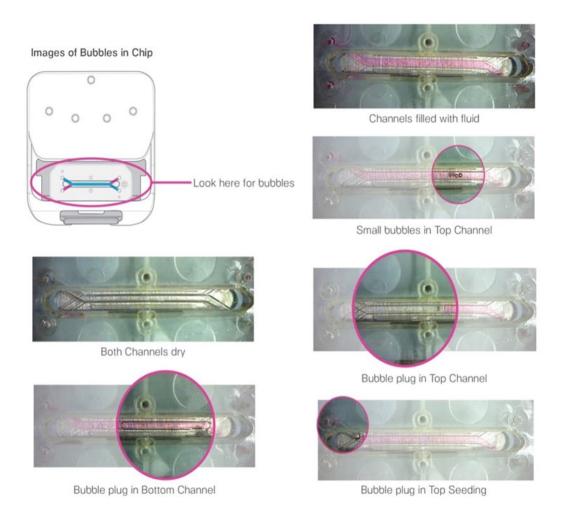
TITLE Chin D4 Dania Danagrah Kit Dratagal	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 23 of 65

Part VI Overview, Continued

Potential Root Causes of Bubbles

If a high failure rate due to bubbles is observed, or if bubbles remain after following the mitigation steps above, check for the following:

If	Then
Medium is not sufficiently equilibrated	Be sure to follow media preparations
before adding to Pods	steps in the section "Gas Equilibration
before adding to Fods	of Media."
	Ensure that 50 mL of media can pass
Vacuum for Steriflip® is too weak	completely through the Steriflip in
	about 10 seconds.
Incorrect Steriflip® was used	Confirm the correct Steriflip® unit is
Incorrect Stermip* was used	being used (Millipore SE1M003M00).
Medium was not warmed correctly	Be sure to follow media preparation
,	steps in the section "Gas Equilibration
before the Steriflip® step	of Media."
	Disconnect chip and reprime Pod.
Insufficient priming occurring	Ensure media droplets are present in
	all ports.


Notes on Bubble Issues and Solutions:

- It is recommended that users take note of specific lot numbers for Pods and chips and report them to Emulate for further investigation.
- Ensure there is enough media in Pod reservoirs for culture duration and flow rate.
 For example, for a flow rate of 60 μL / h, users need to have at least 1.5 mL of media for 24 h to prevent the media from depleting and air from being introduced into the chip cultures. Generally, we recommend adding a safety factor of 1.5x the expected media volume. Please refer to details in the section "Media Replenishment."

TITLE Chin D4 Basia Decearsh Kit Dratacal	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 24 of 65

Part VI Overview, Continued

Figure 1 Top view of chip inside chip carrier depicting different types of bubbles that can occur during Organ-Chip culture.

Chin P.1 Pania Panagrah Kit Protocol	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 25 of 65

Part VII: Basic Research Kit Protocol

Protocol Overview

Introduction

This section lists the basic steps for using Organ-Chips in experiments.

Contents

Topic	See Page
Day -X: Reagent Preparation	26
Day -X to 0: Prepare Cells for Chip Culture as Needed	27
Day -1: Chip Preparation	29
Day 0: Seed Cells on Chips	35
Day 1: Chips to Pods, and Pods to Zoë	45
Day 2+: Organ-Chip Culture Maintaining and Sampling	56
Day X: Chip Termination	62

TITLE Chin D4 Boole Decearch Kit Drotecel	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 26 of 65

Day -X: Reagent Preparation

Day -X Procedure

Prepare and aliquot reagents (media supplements, ECM, etc.)

Prepare and aliquot reagents—including media supplements and ECM—prior to use, and store at -20°C to avoid multiple freeze-thaw cycles. Reagents will depend upon the cell type being used for the Organ-Chips. For reference on the types of reagents you may need, refer to the Emulate protocol "EP230 Liver-Chip-R1 Quad-Culture Protocol."

TITLE Chin D4 Basis Descareh Kit Drotocal	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 27 of 65

Day -X to 0: Prepare Cells for Chip Culture as Needed

Day -X to 0 Procedure

Introduction

Prior to chip seeding, the cells should be prepared depending on the organ model and the cell source type. When deciding the best way to prepare the cells, users should consider specific cell types' capacities to proliferate and differentiate. Typical procedures are listed below.

A. Thaw and expand cells

Cell lines and most primary cells can be cryopreserved and further expanded in flasks prior to chip seeding (e.g., LSECs, HIMECs, Caco2 cells, HepG2 cells, and HUVECs). In general, cells can be thawed 2–7 days before chip seeding to allow for expansion of up to 85–90% confluency.

Furthermore, thawing cells directly onto the T75 flask with 30 mL of media and letting them attach (for at least 6 h and at most overnight) before media change is generally better than performing centrifugation at the time of thawing. Nevertheless, cells should be thawed, handled, and expanded according to the appropriate Emulate culture protocol, cell manufacturer's instructions, or user's specific routine protocols. Users should ensure that cell quality and cell-specific phenotypes are preserved after repeated freezing and expansion.

B. Thaw, expand, and differentiate iSPCs

When iPSCs are used as a cell source for an Organ-Chip, differentiation into particular cell lineages requires specific procedures, reagents, and timelines. Consequently, the exact timing required to achieve specific stages can vary greatly between models.

Users should ensure that cell quality and cell-specific phenotypes are preserved after repeated freezing and expansion. Moreover, iPSC-derived cells can be seeded on the chip at the final differentiation stage (e.g., microvascular endothelial cells for Brain-Chip) or at an intermediate differentiation stage (e.g., intermediate mesoderm cells seeded on glomerulus Kidney-Chip) (Musah, et al 2018).

C. Prepare spheroid culture from biopsy tissue and expand culture

Since spheroids isolated from patient-derived biopsies are composed of multiple cell types, they are a great cell source for chips. Standard methods can be used to generate tissue fragments of adequate size and culture them in 3D Matrigel systems for *in vitro* expansion prior to seeding them on chips.

TITLE Chin D4 Basis Descareh Kit Dretseel	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 28 of 65

Day -X to 0 Procedure, Continued

D. Thaw cells and directly seed on chips

Some cells are terminally differentiated and cannot be expanded *in vitro* (e.g., human primary hepatocytes, human Kupffer cells, and human stellate cells). In those cases, cells can be cryopreserved from the initial biopsy and thawed only on the day of chip seeding. Upon thawing, cells are washed and counted in the presence of Trypan Blue to estimate cell viability. A cell solution, prepared with the seeding density of choice, is used to seed the top or bottom channel of ECM-coated chips. Chips are incubated at 37°C undisturbed for at least 2 h and at most overnight in order to allow the cells to attach to the membrane (incubation time is cell-type dependent).

TITLE Chin D4 Basis Descareh Kit Dretseel	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 29 of 65

Day -1: Chip Preparation

Day -1 Procedure

Introduction

Chip preparation includes coating it with ECM—a thin layer of extracellular proteins that anchors the cells to the chip surface. The use of an ECM is required to ensure optimal cell performance with the Human Emulation System. Users can choose the optimal ECM for the cell types being used in the chips.

Goals

Coat the inner channels with ECM proteins for cell attachment

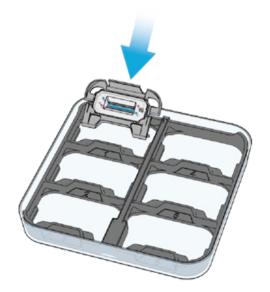
Required Materials

- Chip-R1™ (12 chips per Zoë Culture Module)
- Chip Cradle (2 are shipped per Zoë Culture Module)
- 15 mL conical tubes
- DPBS (- / -) on ice
- 70% ethanol
- ECM components
- 120 X 120 mm cell culture dish
- Ice and ice bucket
- Pipettes and filtered tips
- Aspirator and sterile tips

Key Steps

Topic	See Page
Unpack and Label Chips	30
Prepare ECM Solution	31
Coat Chips with ECM	33

Chin D4 Boole Boolersh Vit Brotocel	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 30 of 65


Unpack and Label Chips

Steps

Step	Action
	Spray the chip packaging, square cell culture dish packaging, and
1	autoclaved Chip Cradle with 70% ethanol, and bring them into the BSC.
	Open the Chip Cradle sterile packaging. 2 Chip Cradles are shipped 2
2	per Zoë Culture Module. If necessary, additional cradles can be
	purchased from Emulate.
2	Place the Chip Cradle into the square dish, making sure it is oriented
3	properly (corners facing up).
4	Open the chip packaging carefully and pick up the chip.
	Label the chip carrier tab with ID numbers for each chip needed in the
5	experiment. Place the first chip into the Chip Cradle by sliding the
	back of the carrier under the tabs on the cradle (See Figure 2).
	Open the remaining chips necessary for the experiment and place
6	them into the cradle. Note that 1 Chip Cradle can support up to 6
	chips.

Figure 2

Place chips by sliding them under the tabs of the Chip Cradle

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 31 of 65

Prepare ECM Solution

ECM Overview

ECM solutions are prepared fresh each time by combining the individual ECM components with cold, sterile DPBS to the final working concentrations. ECM solutions will be used to coat both the top and bottom channels.

Note on Coating

In some models, such as the human Liver-Chip and human Brain-Chip, the same solution is used to coat both channels. In other models, such as the human Colon and Duodenum Intestine-Chips, the channels must be coated with different solutions to ensure proper cell functionality.

Example: ECM for Liver-Chip

ECM composition and concentration should be optimized for any new Organ-Chip model prior to beginning studies. Below is an example of proper ECM solution preparation under optimal conditions for the human Liver-Chip.

ECM working concentration is:

Collagen I: 100 µg / mL

Fibronectin: 25 µg / mL

Step	Action
1	Bring an ice bucket and ice to the BSC.
2	Thaw one aliquot of fibronectin (1 mg / mL) on ice. Maintain all ECM components and
2	solutions on ice at all times.
	Calculate the total volume of ECM solution needed to coat all chips.
3	Volume required per chip = approximately 100 μL
	• For every 12 chips to be coated, prepare 1.5 mL of ECM solution (12 chips x 100 μL
	/ chip + extra 300 μL = 1.5 mL of ECM solution). See calculation examples below.
4	Combine components to prepare ECM working solution.
5	Keep the ECM solution on ice until it is ready to use.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 32 of 65

Prepare ECM Solution, Continued

Example Calculation: Liver-Chip

ECM Calculation Example (C1V1 = C2V2)

Solution	Concentration
Collagen I stock concentration	8.41 mg / mL (C1)
Collagen I final concentration	0.1 mg / mL (C2)
Fibronectin stock concentration	1 mg / mL (C1)
Fibronectin final concentration	0.025 mg / mL (C2)
Stock volume	collagen I (X) or fibronectin (Y) (V1)
Final volume of ECM solution	1.5 mL (V2)

Collagen calculation:

$$(8.41 \text{ mg / mL}) \times (\mathbf{X} \text{ mL}) = (0.1 \text{ mg / mL}) \times (1.5 \text{ mL})$$

 $X = 17.83 \mu L$ of collagen I stock solution

Fibronectin calculation:

$$(1 \text{ mg / mL}) \times (\mathbf{Y} \text{ mL}) = (0.025 \text{ mg / mL}) \times (1.5 \text{ mL})$$

$$Y = 37.5 \mu L$$
 of fibronectin

DPBS

Volume DPBS =

(total volume of ECM needed) – (volume of collagen I) – (volume of fibronectin)

$$= 1500 \ \mu L - 17.83 \ \mu L - 37.5 \ \mu L$$

 $= 1444.67 \mu L \text{ of DPBS}$

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 33 of 65

Coat Chips with ECM

Steps

The steps for coating chips with ECM are as follows:

Step	Action
1	Fully aspirate the cold DPBS from both channels.
	Set a P200 pipette to take up 200 μL of ECM solution.
	Note: If using the same ECM solution for both channels, it is
	recommended to fill the bottom channel and the top channel—in that
2	order—before moving to the next chip. However, if using two different
	ECM solutions, it is recommended to fill the bottom channels of each
	chip within one cradle first, then change pipette tips to fill the top
	channels.
3	Carefully introduce ECM solution through the bottom
	channel inlet until a small ECM droplet forms on the outlet.
	Without releasing the pipetting plunger, take the pipette out from the
	bottom channel inlet and move the pipette containing the remaining
4	ECM solution to the next inlet (this may be either a top or bottom inlet
	depending on the number of ECM solutions used per chip). Introduce
	ECM solution through the next inlet, leaving small droplets of excess
	ECM solution on both ports in both channels (See Figure 3).
	Inspect each channel to ensure there are no bubbles. If bubbles are
5	present, wash the channel with ECM solution until they have all been
	removed.
6	Repeat steps 1 through 6 for each chip.
	Fill the chip cradle reservoir with 0.75 mL of DPBS to provide extra
	humidity (See Figure 4).
7	Note: The ECM droplets may combine if the same components are
	being used in both channels. Care should be taken when using
	different solutions in order to prevent them from mixing.
	For the best results, incubate the chips at 4°C overnight, then at 37°C
8	for at least 1 h the following day prior to seeding.
	Note: Chips can be stored at 4°C for up to 2 days if kept moist.

TITL	TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
		Date 26-SEP-2024	Page 34 of 65

Coat Chips with ECM, Continued

Figure 3 Image of a chip carrier containing a chip with small droplets of ECM solution at its ports:

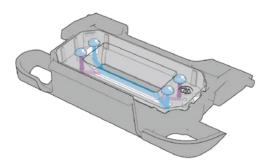
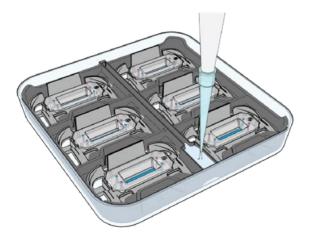



Figure 4 Fill the central reservoir of the Chip Cradle with 0.75 mL of DPBS:

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 35 of 65

Day 0: Seed Cells on Chips

Day 0 Procedure

Introduction

Chips can be seeded with a variety of cell types and cell sources. The seeding order and density should be empirically determined by the user.

Considerations Considerations for seeding cells on chips:

If	Then
The bottom channel is being seeded	Use 15–20 µL
The top channel is being seeded	Use 35–40 µL
The cell suspension is ready for chip	Seed only one chip and inspect under the microscope
seeding	to confirm proper cell density. Adjust accordingly, if
	needed, before seeding the remaining chips.
The bottom channel has just been seeded	Quickly invert the chip to allow the cells to adhere to
	the opposite side of the porous membrane. Users can
	invert all chips simultaneously by inverting the Chip
	Cradle (See Figure 5).
The application requires obtaining the	Users can seed the bottom channel in two consecutive
vascular channel's full lumen (i.e., cells	steps using two flasks of cells, allowing them to attach
attached to upper and lower surface of the	to both the upper and lower surfaces at each step.
bottom channel)	
More than one cell type is being seeded	The model must first be optimized. To find more
into either channel	information and example protocols, refer to the
	Emulate website for specific Organ-Chip Culture
	protocols at https://emulatebio.com/support/

Tips

Tips for successful chip seeding:

- Inject cells into the chip quickly so they distribute evenly throughout the channel.
 A slow injection will generate a gradient of cells that puts higher densities towards inlets and lower densities towards outlets.
- Ensure all media is aspirated from the chip surface before and after injecting the cells. Culture media surrounding ports can cause local gradients on inlet and outlet regions.
- Use the aspirator to hold the chip in place while removing the pipette. This will prevent chip displacement in the chip carrier as well as uneven cell distribution within channels.

Chin D4 Boole Boolersh Vit Brotocel	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 36 of 65

Day 0 Procedure, Continued

Key Steps

Steps	See Page
Wash Chips	37
Prepare Cells for Seeding on Chip	38
Seed Cells into Bottom Channel	40
Seed Cells into Top Channel	42
Seed a Well Plate (Quality Control of Cell Morphology)	43
Gravity Wash Chips (2–18 Post Seeding)	44

Required Materials

- Complete cell-seeding media for all cell types (at 37°C)
- 1X DPBS (at room temperature)
- Serological pipettes
- Pipettes and filtered tips
- Aspirator and sterile tips
- 15 mL conical tubes
- Diluted Trypan Blue counting solution
- Hemocytometer
- 70% ethanol
- Cell culture microscope

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 37 of 65

Wash Chips

Steps

The steps for washing chips are as follows:

Step	Action
1	Transfer ECM-coated chips from the incubator into the BSC.
	Gently wash both channels of the chip with 200 µL of complete cell
	culture medium for the first cell type to be seeded. Aspirate the
2	excess medium outflow on the surface of the chips, leaving enough
	medium to cover the inlet and outlet ports.
	Cover the square dish. Place the chips in the incubator until the cells
3	are ready to be seeded.

TITLE		Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 38 of 65	

Prepare Cells for Seeding on Chip

Collecting cells

Regardless of the cells' type or source, they will require collection from flask, tube, or plate, washing and density adjustment.

Reagents

Reagents such as Trypsin, TrypLE, Accutase, and Cell recovery solution can be used to obtain single cell suspensions of samples expanded *in vitro* prior to seeding chips.

Counting Cells

We recommend counting cells in the presence of Trypan Blue to estimate the viability. For the best chip performance, only seed cell populations exhibiting 85% viability or higher.

Adjusting Cell Density

Following cell counting and viability determination, adjust the cell solution to the desired density. Ensure that enough seeding solution is prepared to seed all chips within an experiment.

Note: Adjusting Cell Density

If there is not enough volume of cell suspension available, you may pipette additional media and count the cells again. This will allow all chips to be seeded at a cost of decreased cell density. This approach is not recommended when seeding non-proliferative cells, as they will not form a confluent monolayer.

Continued on next page

TITLE	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 39 of 65

Prepare Cells for Seeding on Chip, Continued

Example: Cell Density Adjustment

Example of cell density adjustment:

Variable	Definition
C1	viable cell yield
C2	optimal final density
V1	volume of cell suspension to dilute
V2	volume of cell suspension needed to seed all
	chips

Determine volume of cell suspension to dilute by solving for V1 using the equation C1V1 = C2V2

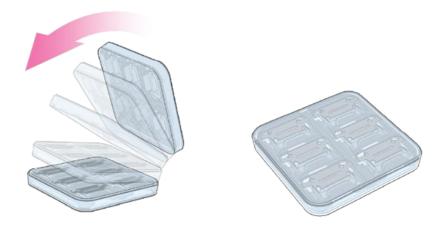
- 1) Determine the values for C1, C2, and V2
 - a. C1: for this example, let's assume 10 x 10⁶ cells / mL)
 - b. C2: (2 x 10⁶ cells / mL)
 - c. V2:
- i. Number chips seeded = 20
- ii. Volume of cell suspension to seed one chip (~35 μL)
- iii. $20 \times 35 = 700 \mu L \text{ or } 0.700 \text{ mL}$
- 2) Use the equation to solve for V1:
 - a. $(10 \times 10^6 \text{ cells / mL}) \times V1 = (2 \times 10^6 \text{ cells / mL}) \times (0.7 \text{ mL})$
 - b. $V1 = 0.140 \text{ mL} \text{ or } 140 \text{ } \mu\text{L}$
- 3) Determine media volume needed by subtracting V1 from V2
 - a. $700 \mu L 140 \mu L = 560 \mu L$
 - b. Dilute 140 μ L of cell suspension with additional 560 μ L of media to obtain 2 x 10 6 cells / mL final concentration

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 40 of 65

Seed Cells into Bottom Channel

Overview

For most Organ-Chip models, the bottom channel is populated by tissue-specific endothelial cells to emulate the vascular lumen. However, other cell types can be used in addition to, or instead of, endothelial cells. In the Liver-Chip Quad-Culture, for example, Kupffer cells and stellate cells are seeded simultaneously with LSECs, and all cells are co-cultured in the bottom channel.


Steps

Step	Action
1	Bring the square dish containing the ECM-coated, washed chips to the BSC.
2	While avoiding contact with the ports, gently aspirate medium droplets from the
	surface of one chip.
3	Gently agitate the cell suspension before seeding each chip to ensure a
	homogeneous cell suspension.
4	Seed 15 to 20 µL of the cell suspension into the bottom channel
	while aspirating the outflow.
5	Cover the dish and transfer it to the microscope to confirm proper seeding
	density within the chip.
	If the seeding density is not optimal or cell distribution is not even, return the
	chips to the BSC and wash the channel with 200 µL of fresh medium twice. Do
6	not aspirate the medium from the channel. Adjust cell density accordingly, and
	repeat steps 3 through 5 until the correct density is achieved within the
	channel.
	After confirming the correct cell density, seed the remaining chips in one dish.
7	Note: Minimize the amount of time the cells are outside the incubator by
	seeding no more than 6 chips at a time and by immediately placing the chips in
	the incubator at 37°C after seeding each batch of 6.
	Once all 6 chips have been seeded in the cradle, cover the dish and then carefully invert it (Figure 5).
8	Note: After seeding the bottom channel, chips should be inverted as soon as
	possible to ensure cells attach to the upper side of the bottom channel.
	To prevent evaporation during incubation, fill the central reservoir with 0.75 mL
9	of DPBS and then place the cover onto the square dish.
10	Seed the remaining chips.
	Incubate chips in the 37°C incubator for approximately 2 h or until cells have
11	attached.
	Upon cell attachment, aspirate DPBS from the central reservoir, and flip the
	dish back to an upright position.
	Note 1: It is essential to achieve the correct seeding density to prevent chip
12	failure.
	Note 2: If full vascular lumen is desired, repeat the steps above with additional
	endothelial cells, and incubate chips in the upright position to allow the cells to
	attach in the bottom of the channel.
	I

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 41 of 65

Seed Cells into Bottom Channel, Continued

Figure 5 Inverting chips during endothelial cell attachment:

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 42 of 65

Seed Cells into Top Channel

Overview

The top channel of any Organ-Chip model is typically populated by tissue-specific epithelial cells that provide the characteristic function of the organ of interest (e.g., Liver-Chip, Proximal Tubule Kidney-Chip and Lung-Chip). However, other cell types can be seeded alongside, or instead of, epithelial cells.

Example: Brain-Chip

On the Brain-Chip, neurons, astrocytes, pericytes, and microglia are seeded simultaneously, and all cells are co-cultured in the top channel.

Steps

Step	Action
1	Bring the square dish containing the ECM-coated, washed chips to the
1	BSC.
2	While avoiding contact with the ports, gently aspirate medium droplets
2	from the surface of one chip.
3	Gently agitate the cell suspension before seeding each chip to ensure a
3	homogeneous cell suspension.
4	Seed 35 to 50 µL of the cell suspension into the top channel while
4	aspirating the outflow.
5	Cover and transfer the dish to the microscope to confirm proper seeding
3	density within the chip.
	If the seeding density is not optimal or cell distribution is not even, return
	the chips to the BSC and wash the channel with 200 µL of fresh medium
6	twice. Do not aspirate the medium from the channel. Adjust cell density
	accordingly, and repeat steps 3 through 5 until the correct density is
	achieved within the channel.
	After confirming the correct cell density, seed the remaining chips in one
	dish.
7	Note: Minimize the amount of time the cells are outside the incubator by
	seeding up to 6 chips at a time and then immediately placing them into
	the 37°C incubator.
8	To prevent evaporation during incubation, fill the central reservoir with
0	0.75 mL of DPBS and then place the cover onto the square dish.
9	Seed the remaining chips
10	Incubate chips at 37°C for approximately 2 h or until cells have attached.
	Upon attachment, aspirate DPBS from the central reservoir, and flip the
11	dish back to an upright position.
	Note: Correct seeding density is essential to prevent chip failure.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 43 of 65

Seed a Well Plate (Quality Control of Cell Morphology)

Overview

It is recommended to always seed any remaining cells into a 24-well plate as a control for cell quality. Ideally, plates should be coated with the same ECM solution applied to the chips, but collagen I pre-coated plates can also be used.

Steps

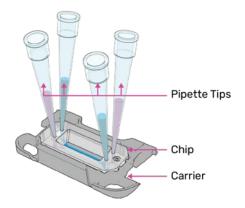
Use the steps below to empirically find adequate cell seeding density for a 24-well plate:

Step	Action
1	Further dilute the cell suspension with warm medium to a final cell
'	density of 0.8 x 10 ⁶ cells / mL.
	Add 400, 500, and 600 µL of the cell suspension to 3 separate wells
2	of the 24-well plate, respectively.
	Mix each well to ensure an even suspension. Allow the cells to settle
3	for 5 mins on the microscope stage with the light off. Inspect densities
	under the microscope.
	Determine which of the wells depicts the optimal seeding density and
4	then seed the remaining cells using the chosen volume into as many
	wells as desired.
	In the incubator, disperse the cells evenly across the bottom of the
	culture wells by moving the plate in a figure-eight motion across the
5	shelf at least three times while keeping the plate flat on the surface of
	the incubator. Once the cells are dispersed, do not disturb the plate
	until the next day to allow the cells to fully attach.

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 44 of 65

Gravity Wash Chips (2–18 Post Seeding)

Overview


Once the cells in the chip have attached, a gentle gravity wash should be performed. The specific timing of the wash is cell-type-dependent and should be determined by the user. This step is important to ensure that nutrients are replenished and that the channels do not dry out; therefore, each channel should be washed with the relevant media for the particular cell being seeded. Since two media are being used, they must be separated by keeping them in filtered tips.

Steps

The steps for performing a gravity wash on the chips is as follows:

Step	Action
1	Add empty tips to both outlet ports.
	With a P200 pipette, gently introduce media into the inlet ports one
2	channel at a time—starting with bottom channel—until medium is
	observed flowing into the empty tip in the outlet port.
2	Disconnect pipette from tip, leaving the tip inserted in chip ports (See
3	Figure 6).
4	Incubate the chips overnight at 37°C.
	Maintain the cells in static culture within the chips until connecting
_	them to Pods and Zoë.
5	Note: If cells are fully attached, the chips can be connected 2 h after
	seeding.

Figure 6 Chips with filtered tips inserted into ports with respective media:

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 45 of 65

Day 1: Chips to Pods, and Pods to Zoë

Day 1 Procedure

Goals

- De-gas and equilibrate media
- Connect chips to Pods
- Connect Pods to Zoë

Key Steps

Topic	See Page
Prepare Complete Culture Media for Connection and Aliquot	46
Wash Chips	47
Gas Equilibration of Media	48
Prime Pods	50
Connect Chips to Pods	53
Connect Pods to Zoë	54

Required Materials

- Installed and qualified Zoë
- Prepared chips
- Pods (sterile)—1 per chip
- Tray—1 per 6 chips
- Steriflip® filtration unit: PVDF filter 0.45 µm (sterile)
- Vacuum source (minimum -70 kPa)
- Serological pipettes
- Pipettors and filtered tips
- 37°C water or bead bath
- 70% ethanol

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 46 of 65

Prepare Complete Culture Media for Connection and Aliquot

Overview

On the day of chip connection, prepare a sufficient volume of complete cell culture medium for each chip channel (e.g., epithelial cell and endothelial cell culture media). The amount of medium needed depends on how many chips will be connected to the flow. It is generally recommended to prepare at least 3.5 mL of each medium type per chip; however, users are encouraged to make slightly more to account for possible pipetting errors.

Steps for Aliquoting

Aliquot the media as follows:

Step	Action
1	Aliquot 4 mL or more of complete medium for each channel per chip into fresh tubes. This is required for washing chips and for chip connection to flow.
2	Warm these media at 37°C for at least 1 h before gas equilibration.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 47 of 65

Wash Chips

Steps

The steps for washing chips are as follows:

	<u> </u>
Step	Action
1	Transfer the seeded chips in the square dish from the incubator to the BSC.
2	Remove the pipette tips from the chip inlet and outlet ports.
3	Gently wash both channels of each chip with 100–200 µL of the appropriate warm cell culture medium to remove any possible bubbles in the channels.
4	For every chip, place small droplets of medium onto the top of each inlet and outlet port.
5	Place chips back in incubator until the Pods are ready for connection.

Note on Media Mixture

It is fine if the media mixes at this step. The most important thing is to ensure that all ports are covered with media so that a liquid-liquid interface will be formed when connecting to Pod.

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 48 of 65

Gas Equilibration of Media

CAUTION

The media equilibration step is imperative to successfully culture Organ-Chips. Omitting this step will cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.

Overview

Once the culture media for both chip channels have been warmed for at least 1 h, the gas equilibration step can be performed.

Note on Work Environment

Work quickly and ensure the medium is not outside of a warmed environment—such as an incubator or bath—for longer than 10 mins, as gas equilibrium can become compromised when the medium is allowed to cool.

Note on Cooling

If the vacuum pump is not located close to the water bath (e.g., inside the BSC), it is recommended to place some clean water warmed at 37°C inside the BSC in order to minimize cooling during the media equilibration step.

Steps

The steps for equilibrating media are as follows:

Step	Action	
1	Bring tubes containing warm media to BSC.	
2	Immediately connect each 50 mL tube to a Steriflip® unit	
2	(See Figure 7).	
3	With the unit "right-side up" (medium in the bottom conical tube),	
3	apply vacuum for 10 seconds.	
	Invert the Steriflip-connected tubes, and check that the medium	
	begins to pass from the top conical tube to the lower tube.	
	Note 1: The vacuum source must operate at least -70 kPa. At this	
4	correct pressure, it should take about 2 seconds for every 10 mL of	
4	medium to flow through the filter. Leave the filtered medium under	
	vacuum for 5 mins.	
Note 2: If possible, keep media warm at 37°C (on beads or water		
	bath) during the degassing step to ensure best efficiency.	
5	Remove the vacuum tubing from the Steriflip® units.	
	Separate the conical tubes containing media from the Steriflip® unit.	
6	Immediately place the conical tubes containing media in the incubator	
6	with the caps loose to ensure that media remains equilibrated with	
	incubator gas conditions.	

Continued on next page

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 49 of 65

Gas Equilibration of Media, Continued

Note on Media Temperature Minimize the time media is outside of the incubator during Pod preparation to maintain temperature. This is a very important step to prevent chip failure.

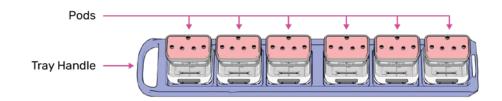
Figure 7

Illustration of Steriflip® unit:

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 50 of 65

Prime Pods

CAUTION

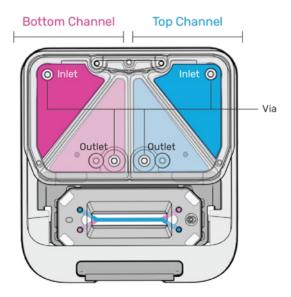


Ensuring successful Pod priming is best practice for successful liquidliquid connection between the chip and Pod. Failure to do so can cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.

Priming Steps The steps for priming Pods are as follows:

Step	Action
4	Sanitize the exterior of the Pod packaging and Zoë trays with 70%
1	ethanol, wipe it, and transfer it to the BSC.
	Open the Pod package and then place the Pods into the trays. Orient
2	the Pods with the reservoirs toward the back of the tray (See Figure
	8).
	Pipette 3 mL of pre-equilibrated, warm media to each inlet reservoir,
3	being sure to add the appropriate cell type-specific media to the
	correct Pod inlet reservoir.
4	Pipette 300 μL of pre-equilibrated, warm media to each outlet
4	reservoir, directly over each Via (See Figure 9).
5	Bring the trays containing the Pods to the incubator to keep media
5	warm until all Pods have been filled.
6	Slide one tray completely into Zoë so that the handle is facing
U	outward.
	Run the Prime Cycle on Zoë. (See details on Page 51)
7	Note: It is recommended to run the Prime Cycle on one tray at a time
	to ensure the prime droplets do not dry while in the incubator.
	Close the incubator door and allow Zoë to prime the Pods (this
8	process takes approximately 1 min).
0	Note: Once "Start" is selected, there will be an audible sound as Zoë
	engages the Pods.
9	Remove the tray from Zoë, and then bring it to the BSC.
10	Verify that all Pods within the tray were fully primed. This is very
10	important for successful chip connection.

Figure 8



Continued on next page

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 51 of 65

Prime Pods, Continued

Figure 9

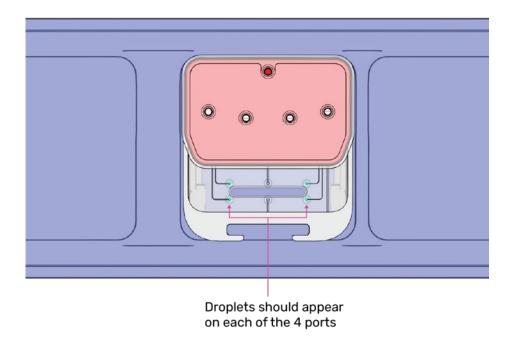
Running the Prime Cycle

The steps for running the Prime Cycle on Zoë are as follows:

Step	Action			
1	Rotate the Dial to highlight "Prime" on the display.			
2	Use the Dial Button to select "Prime."			
3	Rotate the Dial clockwise to highlight "Start."			
4	Press the Dial Button again to select "Start," beginning the Prime Cycle. Note: Once "Start" is selected, there will be an audible sound as Zoë engages the Pods.			

Pod Priming Verification

Take out the tray and inspect the top of the Pods (See Figure 10) to verify the presence of small media droplets through the Pod window at all four fluidic ports.


If	Then
Droplets are not visible through the top	Rerun the Prime Cycle on those Pods.
window	If the issue persists, contact Emulate
	Support.
Any outlet port does not show a	Ensure step 4 of "Priming Steps" has
droplet, but the inlet port does	been performed correctly.
Any media escaped onto the tray (this	Clean the tray using a wipe sprayed
may occur more often by the outlet	with 70% ethanol.
ports)	

Continued on next page

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 52 of 65

Prime Pods, Continued

Figure 10 Top view of chip in Pod with fluidic ports covered with droplets:

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 53 of 65

Connect Chips to Pods

Steps The steps for connecting chips to Pods are as follows:

Step	Action
Otep	While holding one chip in the dominant hand (maintaining it in the chip
	carrier) and one Pod in the non-dominant hand, slide the chip carrier
1	into the tracks on the Pod's underside until the chip carrier has seated
	fully.
2	Place a thumb on the chip carrier tab. Gently but firmly press the tab
2	in and up to fit into the chip carrier's tab with the Pod.
3	Place the Pod with the connected chip onto the tray.
	Aspirate any excess media on the chip surface from the Pod window.
	Additionally, clean all excess media from the trays and bottoms of
	Pods using a wipe sprayed with 70% ethanol.
	Note: This is a crucial step, as media can easily fall into the recess of
4	the Chip-R1 gasket during connection or at any point when leaving
	droplets over the ports (i.e., during ECM coating). DO NOT drag the
	aspirator tip across the top of the chip, as this can cause scratches on
	the top layer. Instead, aspirate against the corners and edges of the
	chip gasket window.
	Figure 11. Aspirating excess media from chip gasket window
5	Repeat steps 1 through 4 for each Pod, chip carrier, and tray.
6	Confirm that there is sufficient media in each Pod inlet and outlet
6	reservoir and that the Pod lids are flat and secure.
7	Bring the tray to the incubator until all samples are connected in order
1	to keep the equilibrated media warm.

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 54 of 65

Connect Pods to Zoë

Overview

Different Organ-Chips will require exposure to different types of mechanical forces. Zoë enables physiologically relevant mechanical forces to be applied via flow and/or stretch (the latter which is not applicable for Chip-R1). The type and optimal level of these forces will be determined depending on the cells of interest and the desired physiologically relevant microenvironment.

Before Running the Regulate Cycles

Once all the chips are connected to Pods:

Step	Action
4	Place the trays into Zoë.
ı	Note: One Zoë can run 12 chips simultaneously.
Program the appropriate Organ-Chip culture conditions on Zoë.	
2	These conditions will start as soon as the Regulate Cycle is complete.
	See the example below.

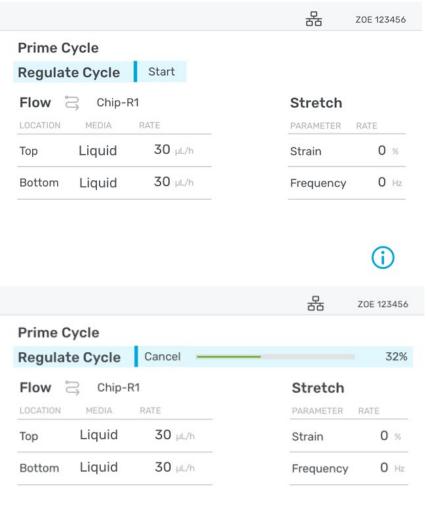
Example Culture Conditions

To culture the human Liver-Chip, set the flow rate to 30 μ L / h for both the top and bottom channels, and set the stretch parameters to 0.

Steps for Running the Regulate Cycles

The steps for running the Regulate Cycle are as follows:

Step	Action	
1	Rotate the Dial to highlight the "Regulate" field.	
2	Press the Dial Button to select "Regulate."	
3	Rotate the Dial clockwise to highlight "Start."	
	Press the Dial Button again to select "Start" and begin the Regulate	
4	Cycle.	
4	Note: Once "Start" is selected, there will be an audible sound as Zoë	
	engages the Pods.	
5	At this point, see that the "Activation" button glows blue.	
The Regulate Cycle lasts for 2 h. There is a progress bar at the		
6	the UI screen (see Figure 12).	
	ATTENTION: Modifications from Chip-S1 Protocol	
7	Immediately upon completion of the Regulate Cycle, pause Zoë by	
/	pressing the silver "Activation" button located above the tray bays.	
	This stops flow and releases the Pods.	
	Remove the Pod lids. Gently aspirate media from all four Pod	
8	reservoirs, ensuring that a thin liquid film still covers the reservoir Vias	
	so that no air is introduced into them.	
	Refill the inlet and outlet reservoirs with channel-specific warm,	
9	equilibrated media at volumes of 3 mL and 300 μL respectively.	
ع ا	Then, perform a Via wash by pipetting 200 µL of the medium in the	
	reservoir directly over the top of the Via to dislodge any bubbles.	


Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 55 of 65

Place the Pod lids back on and return the trays to Zoë. Run the Regulate Cycle again. Once it is complete, Zoë will begin flow at the preset Organ-Chip culture conditions.

Canceling the Regulate Cycle

You can cancel the Regulate Cycle on Zoë, but only as necessary. To do so, highlight the "Regulate" field with the Dial, and press the Dial Button to select it. Rotate the Dial counterclockwise to highlight over "Cancel." Press the Dial Button once more. Wait 1 min for the cycle to end, after which the tray can be removed. If the Regulate Cycle is cancelled, always rerun it fully before proceeding.

Figure 12 Representation of Zoë screen showing the Regulate Cycle starting (top) and in progress (bottom)

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 56 of 65

Day 2+: Organ-Chip Culture Maintaining and Sampling

Day 2+ Procedure

Goals

- Maintain chip culture in Zoë over time
- Collect effluent samples for various analyses

Key Steps

Topic	See Page
Inspect Chips for Bubbles and Cell Morphology	57
Media Replenishment	58
Effluent Sampling	59

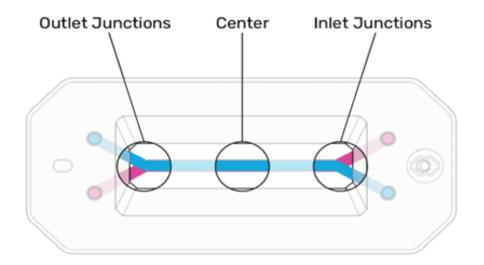
Required Materials

- Chips in Pods
- Cell Culture Medium
- Serological pipettes
- Pipettes with multichannel and filtered tips
- Aspirator and sterile tips
- Cell culture microscope
- 96-well plates or tubes to collect and store effluent

TITLE	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 57 of 65

Inspect Chips for Bubbles and Cell Morphology

Overview


The day after connecting chips and Pods to Zoë, which begins the process of Organ-Chip culture, pause Zoë by pressing the silver "Activation" button located above the tray bays. This stops flow and releases the Pods.

Steps

The steps for inspecting the chips are as follows:

Step	Action
1	Remove the trays and then place them into the BSC.
2	Visually inspect each chip for bubbles and flow issues.
3	Using a microscope, inspect cells in the chips to assess morphology and viability. Capture representative images at 10X or 20X magnification along the length of the chip, as shown in Figure 13.

Figure 13 Capture representative images at 10X or 20X magnification at the following locations: Inlet Junction, Center of Channel, Outlet Junction

Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 58 of 65

Media Replenishment

CAUTION

Failure to replenish media on time will cause air to be introduced into the Pod and chip, which ultimately results in cell death and may cause damage to Zoë Culture Module. Do not fill reservoir past 4 mL of the total volume during replenishment.

Timing

The timing for media replenishment will depend on the specific flow rate used for the experiment. For example, when using a flow rate of 30 μ L / h, 720 μ L of media will take 24 h to flow. We recommend adding a safety factor of 1.5x the expected media volume.

Note on Culture Media

Ensure that enough culture media is contained within the Pod inlet reservoir to ensure that cultures do not deplete.

Steps

The steps for replenishing media are as follows:

Step	Action
1	Pause Zoë by pressing the silver "Activation" button.
2	Remove the trays and then place them into the BSC.
3	Refill the Pod media reservoirs with appropriate fresh cell culture medium. Then, perform a Via wash by pipetting 200 µL of medium directly over the top of the Via to dislodge any bubbles that may be present.
4	Replace the Pod lids and then return trays to Zoë.
5	Ensure media is collected from the indicated regions, avoiding disturbing the Pod reservoir Vias.
6	Dispense the collected effluents into the appropriate well plates or tubes (Figure 15). Change tips between Pods to avoid cross contamination.
7	Cover the Pod and then move on to the next, collecting medium from all your chips. Note: For more information, check the "Effluent Sampling" protocol.

TITLE	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 59 of 65

Effluent Sampling

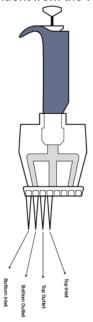
Overview

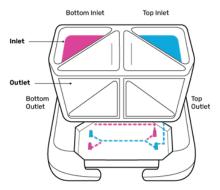
Medium effluent samples can be easily collected from Pod reservoirs over time for many types of analyses, such as ELISA, permeability, LCMS, and others. Samples can be collected on 96-well plates or tubes and stored at -80°C or according to specific kit manufacturer's instructions.

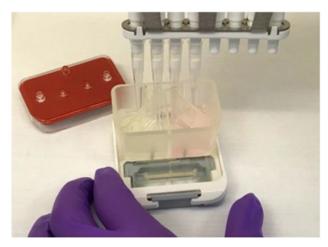
Steps

Follow the steps below to collect effluent from all reservoirs at once:

Step	Action
1	Pause Zoë by pressing the silver "Activation" button.
2	Remove the trays and place them in the BSC.
3	Remove the Pod lid to collect effluent, one Pod at time.
	Use a standard multichannel pipette; adjust the volume to 50-200 µL
4	to collect effluent and media from all the four reservoirs
4	simultaneously by placing the pipette tips into the Pods such that one
	tip is in each reservoir, as depicted in Figure 14.
_	Ensure media is collected from the indicated regions, avoiding
5	disturbing the Pod reservoir Vias.
	Dispense the collected effluents in appropriate well plates or tubes
6	(Figure 15). Change tips between Pods to avoid cross contamination.
7	Cover the Pod and move to the next, collecting medium from all your
/	chips.

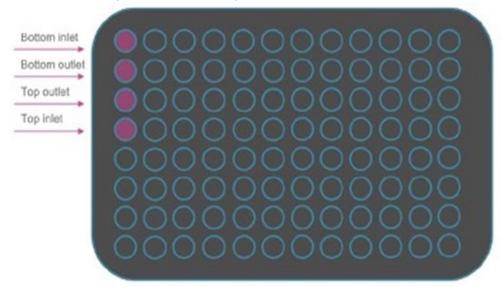

Note: For more information, check the "Effluent sampling protocol".


Continued on next page


Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 60 of 65

Effluent Sampling, Continued

Figure 14 Multichannel collection of effluent from the Pod:



TITLE	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 61 of 65

Effluent Sampling, Continued

Figure 15 Effluent media dispensed in a 96-well plate:

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 62 of 65

Day X: Chip Termination

Day X Procedure

Overview

Once the Organ-Chip experiment is finished, chips can be processed for a variety of analyses, including:

- Preparation of lysates for RNA-based assays
- Live staining or fixation for immunofluorescence imaging
- Harvesting cells for obtaining a single-cell suspension

Information about Endpoint Assays Please refer to Part VIII for additional information on representative validated endpoint assays.

TITLE	Document EP-233	Revision A
Chip-R1 Basic Research Kit Protocol	Date 26-SEP-2024	Page 63 of 65

Part VIII: Useful Protocols and References

Protocols

Culture Protocols

Protocol Subject	ID Number
Liver-Chip R1 Quad-Culture Protocol	EP230

Guidelines

Guideline Subject	ID Number
Chip-R1 Handling Guidelines	EG184

Endpoint and Readout Protocols

Endpoint and Readout Protocols for Chip-S1 are compatible with Chip-R1.

Effluent Assay References		
Document	ID Number	
Effluent Sampling	EP124	
Barrier Function Analysis Protocol	EP187	
Albumin Quantification Assay	EP139	

Lysate Isolation		
Document	ID Number	
Isolation and Purification of RNA Samples (Trizol method)	EP216	
Cell Lysis for RNA Isolation (Non-trizol method)	EP161	
Protein Sample Isolation	EP210	

Imaging Chip References		
Document	ID Number	
Bright Field Phase Contrast Imaging	EP123	
Fluorescence Imaging	EP126	
Live Staining of Cells	EP155	
Fixation and Immunofluorescence-IF-Staining	EP137	

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 64 of 65

References

Publications

Organ-Specific Publication:

Musah, S. et al. "Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip". Nature Protocols. 2018. (13) https://www.nature.com/articles/s41596-018-0007-8

TITLE Chip-R1 Basic Research Kit Protocol	Document EP-233	Revision A
	Date 26-SEP-2024	Page 65 of 65

© Emulate, Inc., 2024. All rights reserved.

Emulate®, the Emulate logo, Human Emulate System® and Orb-HM1® are registered trademarks of Emulate, Inc.

Zoë®, Chip S-1®, Chip-S1®, Chip-R1™, Pod®, Pod-1®, Pod-2™, ER-1® and ER-2® are trademarks of Emulate, Inc.

Steriflip® is a registered trademark of Merck KGaA, Darmstadt, Germany.

Fungin™ is a trademark of Invivogen Corporation.

The technology disclosed in this document may be covered by one or more patents or patent applications owned by or licensed to Emulate, Inc. No license is granted herein. You are solely responsible for determining whether you have all intellectual property rights that are necessary for your intended use of Emulate products or protocols and whether you are required to obtain any additional intellectual property rights from a third party. Further information is available by contacting Emulate.