TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 1 of 84

Liver-Chip Quad-Culture Protocol

August 4, 2023

EP-226 Rev. B

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 2 of 84

Liver-Chip Quad-Culture Protocol

Overview

Introduction

This protocol described the general steps for using the Liver-Chip Quad-Culture BioKit.

Contents

Topic	See Page
Part I. Liver Quad-Culture BioKit	3
Part II. Experimental Overview	4
Part III. Equipment and Materials Required	6
Part IV. Workstation Preparation and Chip Handling Techniques	10
Part V. Liver-Chip Quad-Culture Protocol	14
Part VII. Troubleshooting	74
Part VIII: Appendices	77

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 3 of 84

Part I. Liver Quad-Culture BioKit

Overview

Introduction

This part provides an overview of the Liver-Chip Quad-Culture BioKit as well as its key components, shipping information, and storage specifications.

Components

The Liver-Chip Quad-Culture BioKit includes the pre-qualified primary human liver cells listed in the table below.

Category	Channel Location	Type of Cells
Parenchymal	Тор	Hepatocytes
epithelial cells		
Non-parenchymal	Bottom	Liver sinusoidal endothelial
cells (NPC)		cells (LSECs)
		Kupffer cells
		Stellate cells

Cell Shipping

Cells are shipped in cryogenic storage vacuum flasks.

Cell Storage

Cells must be stored in liquid nitrogen until use.

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 4 of 84

Part II. Experimental Overview

Overview

Introduction

This section gives an overview of the experimental workflow.

Day X: Reagent Preparation

• Aliquot reagents (media supplements, ECM, Matrigel, etc.)

Day -2: Thaw LSECs

- Prepare LSEC culture flask
- Thaw and plate LSECs

Day -1: Chip Preparation

- Prepare chips
- Prepare ER-1 solution
- Introduce ER-1 solution to channels
- Activate chips
- Prepare ECM solution
- Coat chips with ECM

Day 0: Hepatocytes to Chips

- Prepare hepatocyte seeding medium
- Prepare chips
- Thaw hepatocytes
- · Adjust cell density
- · Seed hepatocytes to epithelial channel
- Seed a well plate
- Gravity wash chips (3–4 hours post-seeding)

Day 1: Hepatocyte Overlay

- Prepare overlay medium
- · Overlay hepatocytes

Continued on next page

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 5 of 84

Overview, Continued

Day 2: Non-Parenchymal Cells (NPCs) to Chips

- Prepare NPC seeding medium
- Wash chips
- Harvest LSECs
- Thaw stellate cells
- Thaw Kupffer cells
- Combine NPC mixture
- Seed non-parenchymal cells (LSECs, stellate cells, and Kupffer cells) to bottom channel
- Gravity wash with tips (4 hours post-seeding)

Day 3: Chips to Pods, and Pods to Zoë

- Gas equilibration of media
- Prime Pods
- Wash chips
- Chips to Pods
- Pods to Zoë

Day 4+: Maintaining and Sampling

- Maintenance and the Regulate Cycle
- Sampling and media replenishment

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 6 of 84

Part III. Equipment and Materials Required

Overview

Introduction

Ensure all equipment, materials, and reagents are accessible prior to each experiment. Below are the catalog numbers for the specific materials needed.

Note

Exact catalog numbers are not provided for some required materials, as several brands and models are accepted.

Required Equipment

A list of equipment needed for this protocol in addition to the Emulate Liver-Chip Quad-Culture BioKit is provided below:

Equipment	Subscription	Supplier	Catalog Number
Human Quad-	Quad-Culture 12- or	Emulate	BIO-LH-QUAD12
Culture Liver BioKit	24-pack		BIO-LH-QUAD24
Zoë-CM2® Culture	1 per 12 chips	Emulate	ZOE-CM2
Module			
Orb-HM1 [®] Hub	1 per 4 Zoës	Emulate	ORB-HM1
Module			
Chip-S1®	12 per Zoë	Emulate	S1-3
Stretchable Chip			
Pod® Portable	1 per Chip-S1	Emulate	POD-3
Module			
UV Light Box	1 per Zoë	Emulate	UVLamp
Chip Cradle	Autoclaved, 1 per 6	Emulate	CHIP-CRD
	chips		
Steriflip®-HV Filters	Sterile, 0.45 um	EMD Millipore	SE1M003M00
	PVDF filter		
Square Cell	Sterile, 1 per 6 chips	VWR	82051-068
Culture Dish (120 x			
120 mm)			
Collagen type-1	24-well, flat-bottom,	Corning	356408
coated plates	TC-treated		
Handheld vacuum	-	Corning	4930
aspirator			

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 7 of 84

Aspirating pipettes	2-mL, polystyrene,	Corning /	357558
	individually wrapped	Falcon	
Aspirating tips	Sterile (autoclaved)	-	-
Serological	2-mL, 5-mL, 10-mL,	-	-
Pipettes	and 25-mL low-		
	endotoxin, sterile		
Pipette	P20, P200, and	-	-
	P1000		
Pipette Tips	P20, P200, and	-	-
	P1000 sterile, low-		
	adhesion		
Conical tubes	15-mL and 50-mL	-	-
	polypropylene,		
	sterile		
Eppendorf Tubes®	15-mL, sterile	-	-
Aluminum foil	-	-	-
Parafilm [®]	-	-	-
Microscope (with	For bright-field	-	-
camera	imaging		
Hemocytometer	-	-	-
Manual Counter	-	-	-
Water bath (or	-	-	-
beads)			
Vacuum set-up	-	-	-
T25 Flask	-	-	-
T75 Flask	-	-	-
Ice bucket	-	-	-
70% ethanol wipes	For surface		
	sterilization		

Low-binding tubes are not necessary but can be used to improve Kupffer cell yield.

Note

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 8 of 84

Required Materials

A list of reagents, media, and supplements needed for this protocol in addition to the Emulate Liver-Chip Quad-Culture BioKit is provided below:

Reagent	Description	Supplier	Catalog Number
ER-1	5-mg powder	Emulate	ER105
ER-2	25-mL bottle	Emulate	ER225
Dulbecco's PBS	1X	Corning	21-031-CV
(DPBS -/-) (without			
Ca ²⁺ , Mg ²⁺)			
10X DPBS (-/-)	10X	Corning	20-031-CV
(without Ca++,			
Mg++)			
Trypan blue	0.4% solution	Sigma	93595
Percoll® Solution	100% stock solution	Sigma	P4937
Trypsin-EDTA	0.05% trypsin	Sigma	T3924
solution			
WEM Medium (+)	Williams' medium E	Sigma	W4128
	with phenol red (+)		
WEM Medium (-)	Williams' medium E	Sigma	W1878
	no phenol red (-)		
CSC medium (Kit)	LSEC medium &	Cell Systems	4Z3-500
	supplements		
Culture boost™	50X supplement	Cell Systems	4CB-500
Attachment	1X	Cell Systems	4Z0-210
Factor™			
Cell freezing	1X	Cell Systems	4Z0-705
medium			
Matrigel [®]	LDEV-free	Corning	354234
Fibronectin	Bovine protein,	ThermoFisher	33010-018
	plasma		
Collagen type I	Rat tail; HC	Corning	354249
Penicillin-	10,000 U / mL; 10	Sigma	P4333
streptomycin	mg / mL		
L-GlutaMax™	200 mM	ThermoFisher	35050-061
L-Ascorbic Acid	100-mg powder	Sigma	5960

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 9 of 84

Dexamethasone	100-mg powder	Sigma	D4902
Fetal bovine serum	Sterile, heat-	Sigma	F4135 or F8317
(FBS)	inactivated		
ITS+	Premix supplement	Corning	354352
Fungin™	10 mg / mL	InvivoGen	ANT-FN-1

Notes for ER-1 and ER-2

- Upon arrival, store the ER-1 powder unopened in the metalized pouch at -20°C, protected from light and humidity.
- Upon arrival, store the ER-2 solution at 4°C.
- Both ER-1 and ER-2 reagents should be discarded if stored at room temperature for over 3 weeks, as this can compromise the performance of the reagents.
- If additional ER-1 and ER-2 are needed, they can be purchased separately from Emulate using the product information in the above table.

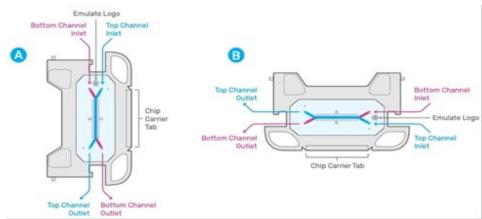
TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 10 of 84

Part IV. Workstation Preparation and Chip Handling Techniques

Workstation Preparation

Aseptic Techniques

- Always work with chips in a sterile environment, such as the biosafety cabinet (BSC).
- Before beginning the experiment, prepare, sanitize, and organize the work surface of the BSC. Arrange tips, media, and other necessary materials in the sterile field so they are easily within reach but not blocking the path of airflow.
- Use 70% ethanol to thoroughly sanitize all reagents and materials before placing them into the BSC.
- Always avoid touching the chip directly. Handle the chip carrier only by the sides, or by the tab, with gloves.
- Do not remove chips from the chip carrier until after the experiment.


Cell Storage

Always store cryopreserved cells in liquid nitrogen. Never store them in dry ice or an -80°C freezer. Chronic temperature fluctuations can cause severe damage to cell membranes and the cytoskeletal components.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 11 of 84

Chip Handling Techniques

Possible Chip Orientations

Orientation A	Orientation B
The bottom channel inlet will be on	The bottom channel inlet will be on the
the top left of the chip, while the top	top right of the chip, while the top channel
channel inlet will be on the top right	inlet will be on the bottom right of the
of the chip. Conversely, the bottom	chip. Conversely, the bottom channel
channel outlet will be on the bottom	outlet will be on the bottom left of the
right of the chip, while the top	chip, while the top channel outlet will be
channel outlet will be on the bottom	on the top left of the chip.
left of the chip.	

Pipetting

• While 50 µL (top channel) and 20 µL (bottom channel) are the standard volumes used throughout the protocol, there can be some flexibility in the actual volumes used:

Channel	Volume Range
Top Channel	35–50 μL
Bottom Channel	15–20 µL

These volumes allow for simple pipetting and a slight overfill to avoid bubbles or dry channels.

 \bullet All wash steps, unless otherwise stated, are performed using 200 μL of the specific wash solution.

Continued on the next page

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 12 of 84

Continued on next page

Channel and Membrane Dimensions

The specific channel and membrane dimensions are outlines below:

Top C	Top Channel		
Width x Height Dimensions	1000 μm x 1000 μm		
Area	28.0 mm ²		
Volume	28.041 µL		
Imaging distance from the bottom of	850 µm		
the chip to the top of the membrane			
	850 µm Bottom of chip to top of membrane		
	Channel		
Bottom Width x Height Dimensions	1000 μm x 200 μm		
Width x Height Dimensions	1000 μm x 200 μm		
Width x Height Dimensions Area Volume Mem	1000 μm x 200 μm 24.5 mm ² 5.6 μL brane		
Width x Height Dimensions Area Volume	1000 μm x 200 μm 24.5 mm ² 5.6 μL		
Width x Height Dimensions Area Volume Mem	1000 μm x 200 μm 24.5 mm ² 5.6 μL brane		
Width x Height Dimensions Area Volume Mem Pore diameter	1000 μm x 200 μm 24.5 mm ² 5.6 μL brane 7.0 μm		
Width x Height Dimensions Area Volume Mem Pore diameter Pore spacing Thickness	1000 μm x 200 μm 24.5 mm² 5.6 μL brane 7.0 μm 40 μm (hexagonally packed)		

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 13 of 84

Chip Handling Techniques, Continued

Pipetting Solution into Channels

Follow the steps below for pipetting solution into the Organ-Chip when coating, washing, and seeding cells prior to attaching the chip to Zoë.

Note: Always introduce liquid to the endothelial channel before the epithelial channel.

Step	Action
	Take a P200 pipette with a sterile pipette tip and collect the solution to
1	be added to the Organ-Chip.
	Place the pipette tip perpendicular to the chip channel inlet, ensuring
2	that the tip is securely in the port.
3	Steadily dispense the liquid through the channel.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 14 of 84

Part V. Liver-Chip Quad-Culture Protocol

Protocol Overview

Introduction

This section lists the basic steps for using Liver-Chip Quad-Culture BioKits in experiments.

Timeline

Topic	See Page
Day X: Reagent Preparation	15
Day -2: Thawing Liver Sinusoidal Endothelial Cells (LSECs)	17
Day -1: Chip Preparation	20
Day 0: Hepatocytes to Chip	30
Day 1: Hepatocyte Overlay	43
Day 2: Non-Parenchymal Cells (NPC) to Chip	47
Day 3: Chips to Pods, and Pods to Zoë	60
Day 4: Chip Maintenance and Sampling	70

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 15 of 84

Day X: Reagent Preparation

Aliquot Reagents

Introduction

Aliquot reagents prior to use so the stock solutions do not undergo multiple freezethaw cycles.

Fibronectin (ECM)

Reagent	Conc. [Stock]	Amount	Volume	Solvent
Fibronectin	1 mg / mL	1 mg	1 mL	Cell culture grade water

- Resuspend 1 mg fibronectin in 1 mL of cell culture grade water according to manufacturer's instructions.
- Create single-use volume aliquots and store them at -20°C.

Matrigel (Overlay)

Reagent	Amount	Volume
Matrigel	5 mg per aliquot	Varies per lot

The Matrigel bottle must be thawed overnight on ice either in the back of the 2–6°C refrigerator or in a cold room. Add water to ensure the ice is slushy, as the solution gels rapidly at temperatures above 10°C. Before aliquoting, use pipettes, tips, and tubes prechilled to -20°C.

 After the Matrigel is thawed, create 5-mg aliquots based on the specific stock concentration. For example, if the stock concentration is 10 mg / mL, 500 μL of solution will yield 5 mg of Matrigel.

 Store aliquots at -20°C. 	
	Continued on next page

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 16 of 84

Aliquot Reagents, Continued

Culture Supplements

Reagent	Conc. [Working]	Volume	Solvent
L-Ascorbic acid	50 mg / mL	Calculate based on	Cell culture grade
		amount measured	water
Dexamethasone	10 mM	Calculate based on	Cell culture grade
		amount measured	DMSO
Dexamethasone	1 mM	Calculate based on	Cell culture grade
		amount measured	DMSO

- Resuspend each supplement to the working concentration in the table above.
- Aliquot each supplement to single-use volumes.

•	Store	alic	uots	at	-20°	C.
---	-------	------	------	----	------	----

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 17 of 84

Day -2: Thawing Liver Sinusoidal Endothelial Cells (LSECs)

Overview

Goals

• Expand LSEC culture media and flask

Required Materials

- Complete LSEC culture medium (at 37°C)
- 15-mL conical tube
- Attachment Factor™
- T-75 flask
- Serological pipettes
- Pipettes and tips
- Aspirator
- Centrifuge
- 70% ethanol

Key Steps

Topic	See Page
Prepare LSEC Culture Media and Flask	18
Thaw and Plate LSECs	19

тітье Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 18 of 84

Prepare LSEC Culture Media and Flask

LSEC Culture Media

Base LSEC Culture Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
CSC basal	485 mL	-	-	Cell Systems	4Z3-500
medium					
Culture-boost	10 mL	-	2%	Cell Systems	4CB-500
Pen / strep	5 mL	-	1%	Sigma	P4333

- Store the LSEC Culture Medium at 4°C.
- Use the LSEC Culture Medium within 30 days of preparation.

Complete LSEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base LSEC	45 mL	-	-	Recipe Above	-
Culture Medium					
FBS	5 mL	-	10%	Sigma	F4135

- Store the Complete LSEC Culture Medium at 4°C.
- Use the Complete LSEC Culture Medium within 7 days of preparation.

Prepare Flask

Step	Action
	Warm a sufficient amount of Complete LSEC Culture Medium and
1	Attachment Factor™ to 37°C. 15 mL of medium is needed for
	thawing, and an additional 15 mL is needed for each flask.
2	Label the culture flask with the relevant information (e.g., cell type,
2	passage number, date, initials).
2	Pipette Attachment Factor onto the growth surface of the flask until it
3	is fully covered. 5 mL of Attachment Factor is used for each T75 flask.
4	Place the prepared flask into the 37°C incubator to coat the surface.
4	Maintain this temperature until the cells are plated (about 5 minutes).

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 19 of 84

Thaw and Plate LSECs

Note on LSECs

LSECs are the only cells in this protocol that must be plated and expanded before being seeded in the chip. LSECs arrive at Passage 3, are expanded once in a flask, and then seeded at Passage 4.

Thawing and Maintaining Cells

Step	Action
	Immerse the vial(s) of cells in a 37°C water bath without submerging the cap. Closely
1	observe and gently agitate the vials. Remove them from the water bath just before the
	last of the ice disappears.
	Spray the vial(s) with 70% ethanol and wipe them dry before placing them into the
2	BSC.
	Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube
3	containing 3 mL of warm Complete LSEC Culture Medium.
	Rinse the vial(s) with 1 mL of Complete LSEC Culture Medium and collect the run-off
4	in the 15-mL tube.
5	Bring the volume to 15 mL with Complete LSEC Culture Medium.
6	Centrifuge 200 x g for 5 minutes at room temperature.
_	Aspirate and discard the supernatant, leaving approximately 100 µL of medium
7	covering the cell pellet.
8	Loosen the pellet by gently flicking the tube.
9	Re-suspend cells in 15 mL of Complete LSEC Culture Medium.
	Aspirate and discard excess Attachment Factor from the T-75 flask that was prepared.
10	Note: It is unnecessary to rinse or dry the flask prior to adding cells.
11	Add the LSEC suspension to the freshly coated T-75 flask.
12	Incubate overnight at 37°C and 5% CO ₂ .
40	Refresh the Complete LSEC Culture Medium every other day until the cells are
13	seeded in the chip.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 20 of 84

Day -1: Chip Preparation

Overview

Goals

- Activate the inner surface of the chip channels for proper ECM attachment
- Coat the inner channels with a mixture of collagen I and fibronectin ECM proteins for cell attachment

Required Materials

- Chip-S1 Stretchable Chips (12 Chips per Zoë)
- ER-1 powder
- ER-2 solution
- 15-mL conical tubes
- DPBS (- / -) at room temperature
- DPBS (- / -) aliquot at 4°C
- Collagen I
- Fibronectin
- 70% ethanol
- Square Cell Culture Dish (120 x 120 mm)
- · Ice and ice bucket
- Pipettes and filtered tips
- · Aspirator and sterile tips
- Aluminum foil
- UV light box
- UV safety glasses

Key Steps

Step	See Page
Prepare Chips	21
Prepare ER-1 Solution	22
Introduce ER-1 Solution to Channels	23
Activate and Wash Chips	25
Prepare ECM Solution	26
Coat Chips with ECM	28

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 21 of 84

Prepare Chips

Step	Action
1	Spray the chip packaging with 70% ethanol and bring it into the BSC.
	Open the packaging, place the Chip Cradle in the dish, and then
2	carefully insert 6 chips into the Chip Cradle (see Figure 1).
	Note: For ease of workflow, ensure the carrier's tab is pointing to the
	right and that all chips are facing the same direction within the dish.
	/z \\\(\lambda\)
	Figure 1. Organ-Chips being placed into a Chip Cradle
3	Label each chip carrier tab with the corresponding chip's ID number.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 22 of 84

Prepare ER-1 Reagent

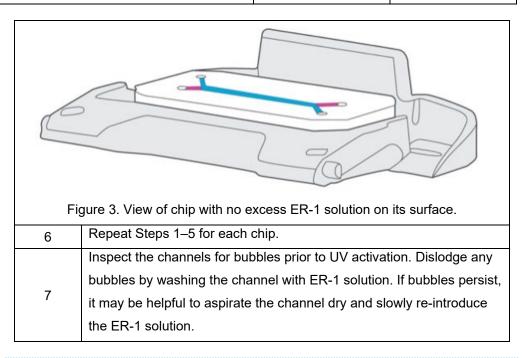
CAUTION

ER-1 is light-sensitive. Prepare ER-1 solution immediately before use and discard any remaining ER-1 solution 1 hour after reconstitution. Using ER-1 solution that has been exposed to light or that has not been freshly prepared will lead to chip failure.

Before You Begin

For complete activation, prepare ER-1 immediately before use, and discard any remaining solution 1 hour after reconstitution.

Note: ER-1 is an eye irritant and must always be handled in the BSC with proper gloves and eye protection.


Action
Turn off the BSC light and allow ER-1 and ER-2 to reach room
temperature before use (approximately 10–15 minutes).
Wrap an empty, sterile, 15-mL conical tube with foil to protect it from light.
In the BSC, remove the small vial of ER-1 powder from the packet. Tap
the vial to concentrate the powder at the bottom.
Add 1 mL of ER-2 to the vial and transfer the contents directly to the
bottom of the 15-mL conical tube. Do not pipette to mix.
Add 1 mL of ER-2 to the ER-1 vial to collect any remaining material and
transfer the solution directly to the 15-mL conical tube.
Note: The color of the transferred ER-1 solution will become lighter each
time the bottle is washed.
Repeat Step 5 two more times, adding another 1 mL of ER-2 each time.
On the last ER-2 addition, cap and invert the bottle to collect any
remaining ER-1 powder in the lid. Transfer the collected solution to the
conical tube, bringing the total volume in the tube to 4 mL of ER-1
solution.
Add 6 mL of ER-2 solution to the 4 mL of ER-1 solution in the 15-mL
conical tube for a final working concentration of 0.5 mg / mL. Gently
pipette the solution to mix it without creating bubbles. The ER-1 should
be fully within the ER-2 solution prior to use.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 23 of 84

Introduce ER-1 Solution to Channels

01	• 4		
Step	Action Using a P200 pipette and a sterile 200-uL filtered tip, draw 200 μL of		
1 ER-1 solution.			
	Note: 200 μL of ER-1 solution will fill approximately 3 chips.		
2	Carefully introduce approximately 20 µL of ER-1 solution to the		
2	bottom channel inlet until it begins to exit the outlet (see Figure 2).		
Тор	Chip Carrier Top Channel Indicator Chip Outlets Vacuum ports Inlets		
F	igure 2. Top view of chip, with labelled ports, in the chip carrier.		
_	Without releasing the plunger, take the pipette out from the bottom		
3	channel inlet, and move it to the top channel inlet.		
	Introduce approximately 50 µL of ER-1 solution to the inlet until it		
begins to exist the outlet.			
	Gently aspirate all excess ER-1 solution from the surface. Be sure to		
5	only remove ER-1 solution from the chip surface—do not aspirate any		
	solution from the channels (see Figure 3).		

TITLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 24 of 84

ТІТLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 25 of 84

Activate and Wash Chips

Step	Action
1	Bring the Square Cell Culture Dish (120 x 120 mm) containing the
'	ER-1-coated chips to the UV light box.
2	Remove the cover from the dish. Place the open dish in the UV light
	box.
3	Set the switch at the back of the UV light box to "Constant." Turn on
	the power and press the "On" button to begin UV activation.
4	Allow the chips to activate under UV light for 15 minutes.
5	While the chips are being treated, prepare the ECM solution. (For
5	more information, refer to the next section, "Prepare ECM Solution.")
6	After UV treatment, bring chips back to the BSC.
0	Note: The BSC light may be on from this point forward.
7	Fully aspirate the ER-1 solution from both channels.
8	Wash each channel with 200 μL of sterile ER-2.
9	Fully aspirate the ER-2 from the channels.
10	Wash each channel with 200 μL of sterile cold DPBS.
11	Leave cold DPBS inside the channels.

тітьє Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 26 of 84

Prepare ECM Solution

Before You Begin

Prepare fresh ECM before each use by combining the individual ECM components with cold DPBS to reach the final working concentrations. The ECM solution will coat both channels.

Needed Volumes

For human Liver-Chips, the ECM working concentrations are:

Reagent	Concentration	
Collagen	100 μg / mL	
Fibronectin	25 μg / mL	

Steps

Step	Action
1	Bring a full ice bucket to the BSC.
2	Thaw one aliquot of fibronectin (1 mg / mL) on ice. Always maintain
	each ECM component and mixture on ice.
	Calculate the volume of ECM solution needed to coat all chips.
	1. Volume required per chip: ~100 μL
3	2. For every batch of 12 chips, prepare 1.5 mL of ECM solution:
	12 chips x 100 μL / chip = 1.2 mL of ECM solution.
	1.2 mL + extra 300 μL = 1.5 mL of ECM solution .
4	Combine the components to prepare the ECM working solution.
5	Keep the ECM solution on ice until it is used.

Continued on next page

ТІТLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 27 of 84

Prepare ECM Solution, Continued

Example ECM Calculation

ECM Calculation Example:

Solution	Concentration
Collagen I stock concentration	8.41 mg / mL (C1)
Collagen I final concentration	0.1 mg / mL (C2)
Fibronectin stock concentration	1 mg / mL (C1)
Fibronectin final concentration	0.025 mg / mL (C2)
Stock Volume	Collagen I (X) or fibronectin (Y) (V1)
Final volume of ECM solution	1.5 mL (V2)

Collagen Calculation:

$$(8.41 \text{ mg / mL}) \times (X \text{ mL}) = (0.1 \text{ mg / mL}) \times (1.5 \text{ mL})$$

 $X = 17.83 \mu L$ of collagen I stock solution

Fibronectin Calculation:

$$(1 \text{ mg / mL}) \times (Y \text{ mL}) = (0.025 \text{ mg / mL}) \times (1.5 \text{ mL})$$

$$Y = 37.5 \mu L$$
 of fibronectin

DPBS Calculation

Volume DPBS =

(total volume of ECM needed) – (volume of collagen I) – (volume of fibronectin)

- = $1500 \mu L 17.83 \mu L 37.5 \mu L$
- $= 1444.67 \mu L \text{ of DPBS}$

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 28 of 84

Coat Chips with ECM

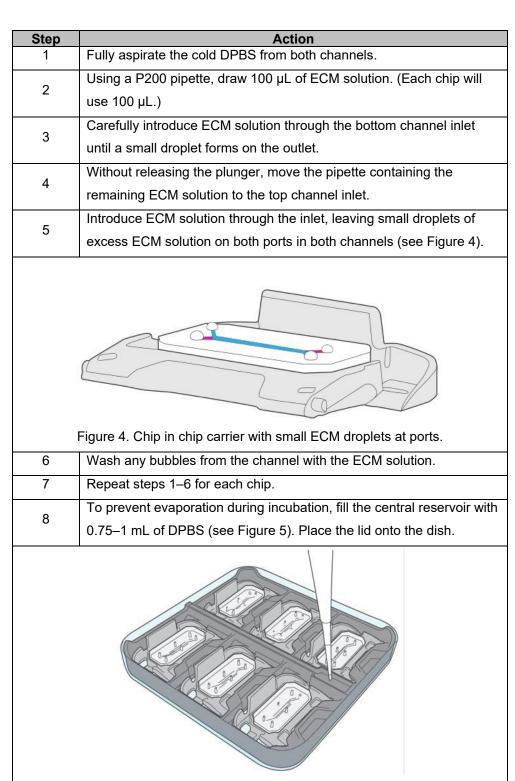


Figure 5. Pipette filling central reservoir of Chip Cradle with 0.75 mL DPBS.

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 29 of 84

9	For best results, incubate the chips at 4°C overnight, then at 37°C for at least 1 hour the following day prior to seeding.
	Note: Chips can be stored at 4°C for up to 2 days if kept moist.

ТІТІЕ Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 30 of 84

Day 0: Hepatocytes to Chip

Overview

Goals

• Seed hepatocytes in chip.

Required Materials

- Complete hepatocyte seeding medium (at 37°C)
- Percoll solution (at room temperature)
- 10X DPBS (at room temperature)
- 1X DPBS (at room temperature)
- Serological pipettes
- Pipettes and filtered tips
- Aspirator and sterile tips
- 50-mL conical tubes
- Diluted trypan blue counting solution
- Hemocytometer
- 24-well collagen I-coated plate
- 70% ethanol
- Microscope

Key Steps

Topic	See Page
Prepare Hepatocyte Seeding Media	31
Prepare Chips	33
Adjust Cell Density	36
Cell Counting and Viability Assessment	37
Seed Hepatocytes to the Top Channel	39
Seed a Well Plate	41
Gravity Wash	42

TLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 31 of 84

Prepare Hepatocyte Seeding Media

Hepatocyte Seeding Media

Base Hepatocyte Seeding Medium (500-mL bottle)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
WEM + (with	490 mL	-	-	Sigma	W4128
phenol red)					
Pen / Strep	5 mL	-	1%	Sigma	P4333
L-GlutaMAX	5 mL	-	1%	Gibco	35050-61

- Store the Base Hepatocyte Seeding Medium at 4°C.
- Use the Base Hepatocyte Seeding Medium within 30 days of preparation.

Complete Hepatocyte Seeding Medium (200 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base Hepatocyte	187.78 mL	-	-	Recipe Above	-
Seeding Medium					
ITS+ premix	2 mL	-	1%	Corning	354352
Ascorbic Acid	200 µL	50 mg / mL	0.05 mg / mL	Sigma	5960
Dexamethasone	20 μL	10 mM	1 μΜ	Sigma	D4092
FBS	10 mL	-	5%	Sigma	F4135

- Store the Complete Hepatocyte Seeding Medium at 4°C.
- Use the Complete Hepatocyte Seeding Medium within 3 days of preparation.

90% Percoll Solution (20 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Percoll Solution	18 mL	100%	90%	Sigma	P4937
10X DPBS (- / -)	2 mL	100%	10%	-	-

- Maintain the 90% Percoll Solution at room temperature prior to use.
- Prepare the Percoll Solution fresh for each use.

	Continued on next page

TITLE	Document EP226	Revision B	
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 32 of 84	

Prepare Hepatocyte Seeding Media, Continued

Hepatocyte Seeding Media, continued

Trypan Blue Cell Counting Solution (45 μL)

Reagent	Volume	Source	Cat. No.
Complete Hepatocyte	40 μL	Recipe Above	-
Seeding Medium			
Trypan Blue	5 μL	Sigma	93595

- Maintain the Trypan Blue Cell Counting Solution at room temperature prior to use.
- Prepare the Trypan Blue Cell Counting Solution fresh for each use.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 33 of 84

Prepare Chips

Step	Action
1	Transfer the ECM-coated chips from the incubator into the BSC.
2	Fully aspirate the ECM from both channels.
	Gently wash each channel with 200 µL of Complete Hepatocyte
3	Seeding Medium. Aspirate the medium outflow on each chip's
	surface, leaving medium in both channels.
	Repeat the wash with an additional 200 µL of Complete Hepatocyte
4	Seeding Medium per channel, leaving the excess medium outflow that
	covers the inlet and outlet ports.
5	Cover the Square Cell Culture Dish (120 x 120 mm) and place the
	chips into the incubator until the cells are ready for seeding.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 34 of 84

Thaw Hepatocytes

Before You Begin

Before thawing the cryopreserved hepatocytes, make sure all equipment is organized and ready for use. Also, be sure that all required reagents are prepared and have reached the appropriate temperature.

Tips for Thawing Cells

- Up to 3 vials of cryopreserved hepatocytes can be thawed at the same time. Once they're thawed, the contents of each should be combined into one 50-mL conical tube (See Step 6 in "Steps" below") and processed as one sample.
- As the cells are thawing, it is critical to work as quickly but gently as possible. This will help maximize cell recovery and minimize damage to the hepatocytes.
- Do not allow the cells to thaw at room temperature or on ice.
- Once the hepatocytes are thawed, dilute them in the cell culture medium as soon as possible to prevent DMSO toxicity within the cryoprotectant.

Step	Action
	Place 3 mL of warm Complete Hepatocyte Seeding Medium into a
1	sterile 50-mL conical tube.
2	Remove the required number of cryovials.
_	Spray each cryovial with 70% ethanol and wipe it dry. Twist the cap a
3	quarter of a full turn to relieve any internal pressure, then re-tighten it.
	Immediately place the frozen vial in a 37°C water bath without
	submerging the cap. Rapidly thaw hepatocytes by gently swirling the
4	vials in the water bath until only a small ice pellet remains. This
	process should take only 60–90 seconds. Thawing any longer
	will decrease viability and cell yield.
	When one small ice pellet remains, immediately remove the vial from
5	the water bath, wipe it dry, spray it with 70% alcohol, and wipe it dry
	again before placing it into the BSC.
	Quickly transfer the contents of the vial into the 3 mL of Complete
6	Hepatocyte Seeding Medium in the sterile 50-mL conical tube
	prepared in Step 1.
	Rinse the cryovial with 1 mL of Complete Hepatocyte Seeding
7	Medium and transfer it to the 50-mL conical tube.

ТІТLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 35 of 84

8	With gentle agitation and swirling, slowly add enough of the Complete
	Hepatocyte Seeding Medium to bring the total volume to 35 mL.
9	Add 15 mL of 90% Percoll solution, bringing the total volume to 50
	mL.
10	Cap the tube tightly and slowly invert it three times to mix the cell
	solution.
11	Centrifuge the cells at 96 x g for 6 minutes at room temperature.
12	Return the tube to the BSC. Carefully aspirate the supernatant,
	leaving 3–5 mL. Ensure the pellet remains undisturbed.
13	Tilt and rotate the tube to gently re-suspend the cell pellet in the
	remaining medium.
14	Gently add enough Complete Hepatocyte Seeding Medium to bring
	the total volume to 50 mL.
15	Centrifuge the cells at 72 x g for 4 minutes at room temperature.
16	Return the tube to the BSC. Carefully aspirate the supernatant,
	leaving 1–2 mL. Ensure the pellet remains undisturbed.

ТІТLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 36 of 84

Adjust Cell Density

Overview

Human hepatocytes must be seeded in the Liver-Chip at a density of 3.5×10^6 cells / mL. It is essential to ensure the seeding density is accurate for viable, functional cells and long-term culture.

Step	Action
1	Tilt and rotate the tube to gently resuspend the cell pellet.
2	Measure the total suspension volume using a 5-mL pipette.
	Confirm the cell pellet has disappeared, sufficiently rotate to
3	homogenize the cell suspension, and transfer 5 µL of the cell
	suspension to the Trypan Blue Cell Counting Solution, generating a
	1:10 dilution.
4	Mix the trypan blue solution thoroughly and count the cells using a
	hemocytometer.

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 37 of 84

Cell Counting and Viability Assessment

Cell Counting and Viability Assessment

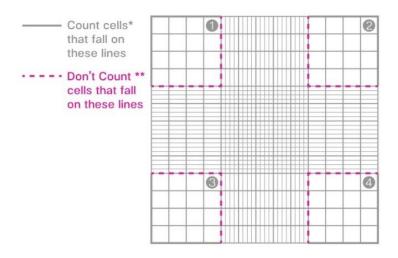


Figure 6. Example hemocytometer

1. Count both viable and non-viable cells in each quadrant of the hemocytometer (see Figure 6).

Live Cell Count, Dead Cell Count, Total Cell Count.

2. Calculate the percentage viability of the cell solution

Live Cells ÷ Total Cells x 100 = % Viability

3. Calculate the viable cell concentration. The dilution factor is 10 when prepared in the trypan blue solution above.

Live Cell Count x (1 x 10 x 10^4) ÷ 4 = Viable Cell Concentration (cells / mL)

- 4. Calculate the viable cell yield.
- 5. Viable Cell Concentration x Cell Suspension Volume = Viable Cell Yield (cells)
- 6. Viable Cell Yield + Desired Density = Reconstitution Volume

Diluting Hepatocytes

After calculating the Viable Cell Yield, dilute the hepatocytes with warm Complete Hepatocyte Seeding Medium to the required final cell density: $3.5 \times 10^6 \times 10^$

Continued on next page

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 38 of 84

Cell Counting and Viability Assessment, Continued

Additional Steps

If the Viable Cell Concentration is less than 3.5×10^6 cells / mL:

Step	Action
	Leave the hepatocyte cell suspension undisturbed at room
1	temperature for at least 5 minutes. This will allow the cells to settle at
	the bottom of the tube.
	Gently remove enough from the top of the supernatant to decrease
2	total cell suspension volume.
	Re-count the cell suspension and recalculate the appropriate seeding
3	density accordingly (Steps 5 and 6 on the next page). This will help
	to avoid subjecting hepatocytes to mechanical stress in centrifugation.

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 39 of 84

Seed Hepatocytes to the Top Channel

Overview

Work with one chip at a time. After seeding the first chip, use a microscope to assess the cell density within the channel. Adjust the density of the cell suspension as necessary for the rest of the chips.

Step Bring the square dish containing the prepared chips to the BSC. Without touching the ports, carefully aspirate excess medium drople from the surface of one chip. Very gently agitate the cell suspension before seeding each chip to ensure a homogeneous cell suspension. Quickly and steadily pipette 40 μL of the cell suspension (at 3.5 x 10 cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seedin density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an even cell layer with ~half a cell radius between individual cells.			
Without touching the ports, carefully aspirate excess medium drople from the surface of one chip. Very gently agitate the cell suspension before seeding each chip to ensure a homogeneous cell suspension. Quickly and steadily pipette 40 µL of the cell suspension (at 3.5 x 10 cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an			
from the surface of one chip. Very gently agitate the cell suspension before seeding each chip to ensure a homogeneous cell suspension. Quickly and steadily pipette 40 µL of the cell suspension (at 3.5 x 10 cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an			
Very gently agitate the cell suspension before seeding each chip to ensure a homogeneous cell suspension. Quickly and steadily pipette 40 µL of the cell suspension (at 3.5 x 10 cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an	₁ 6		
ansure a homogeneous cell suspension. Quickly and steadily pipette 40 µL of the cell suspension (at 3.5 x 10 cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an	₁ 6		
ensure a homogeneous cell suspension. Quickly and steadily pipette 40 µL of the cell suspension (at 3.5 x 10 cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an	6		
cells / mL) into the top channel inlet port while aspirating the outflow fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an	6		
fluid from the surface. Do not directly touch the outlet port. Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an			
Cover the dish and transfer it to the microscope to check the seeding density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an			
density within the chip (see Figure 7). Note: At this stage, cells with optimal seeding density will form an			
Note: At this stage, cells with optimal seeding density will form an	g		
Note: At this stage, cells with optimal seeding density will form an			
even cell laver with ~half a cell radius between individual cells.			
Seeding density too low Seeding density optimal Seeding density too high			
Immediately after seeding			
24 hours			
after seeding			
Figure 7. Hepatocyte seeding density reference chart.			
If the seeding density is not optimal or cell distribution is not even,			
return the chips to the BSC, and wash the channel with 200 μL of			
fresh medium twice. Do not aspirate the medium from the			

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 40 of 84

	channels. Adjust the cell density accordingly and repeat steps 3–5		
	until the density in the channel is correct.		
	After confirming the correct cell density, seed cells in the remaining		
	chips.		
7	Note: Minimize the amount of time the cells are outside the incubator		
	by seeding batches of no more than 12 chips at a time and by		
	immediately placing the batches into the incubator at 37°C.		
	Place the chips (with the DPBS-filled reservoir) in the incubator at		
0	37°C for 4 hours (see Figure 8 for examples of attachment).		
8	Note: Achieving the correct seeding density is essential for the		
	success of the chips.		

Figure 8. The left image shows appropriate attachment. The right image shows poor attachment.

TITLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 41 of 84

Seed a Well Plate

Overview

It is recommended to always seed any remaining hepatocytes into a 24-well plate pre-coated with collagen I as control for cell quality.

Step	Action
1	Dilute the hepatocyte suspension with warm Complete Hepatocyte
'	Seeding Medium to a final density of 0.8 x 10⁶ cells / mL .
2	Add 400, 500, and 600 µL of the cell suspension to three separate
2	wells of the 24-well plate.
	Mix each well to ensure an even suspension and allow the cells to
3	settle for 5 minutes on the microscope stage. After this, inspect the
	densities under a microscope.
	Determine which of the three wells depict the optimal seeding density.
4	Then, using that well's volume, plate the remaining cells into
	individual wells until no cells remain.
	In the incubator, disperse the cells evenly across the bottom of the
	culture wells by moving the plate in a figure-eight motion flat across
_	the shelf at least 3 times while keeping the plate flat on the surface of
5	the incubator. Finally, move the plate in a crisscross pattern at least 3
	times to evenly disperse the cells. Afterward, do not disturb the plate
	until the next day so the cells can fully attach.

TITLE Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 42 of 84

Gravity Wash

Overview

Once the hepatocytes in the chip have attached (4 hours after seeding), perform a gentle gravity wash to ensure that nutrients are replenished, and the channels do not dry out. During the gravity wash, ensure the medium flows through the channel and exits through the outlets.

Steps

Mr. Book : " " " 1 000 1 1 1 1 1 1 1 1 1
With a P200 pipette, gently drop 200 µL on top of both channel inlet
ports. This should cause media to gently flow through the channel and
exit from the outlets.
If the media does not flow through the channel, very gently pipette a
small amount of media into the inlets until a small droplet appears on
the outlet, or until a bubble is ejected from the outlet.
Pipette droplets of media until all inlet and outlet ports are fully
covered. Doing so will help to prevent media evaporation from the
ports (see Figure 9).

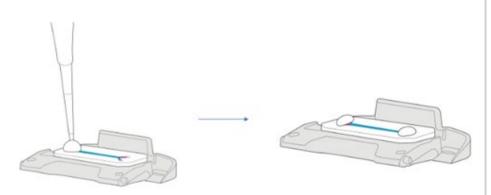


Figure 9. Chip with drops of media covering the inlet and outlet ports.

Incubate the chips overnight at 37°C.

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 43 of 84

Day 1: Hepatocyte Overlay

Overview

Required Materials

- Complete Hepatocyte Seeding Medium (at 4°C)
- Complete Hepatocyte Maintenance Medium (at 37°C)
- Hepatocyte Overlay Medium (at 4°C)
- Matrigel aliquot (at 4°C in slushy ice)
- 50-mL conical tube
- · Serological pipettes
- Pipettes and filtered tips
- Aspirator and sterile tips
- Ice bucket and ice
- 70% ethanol
- Microscope

Key Steps

Topic	See Page
Prepare Hepatocyte Maintenance Medium	44
Prepare Overlay Medium	45
Overlay Hepatocytes	46

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 44 of 84

Prepare Hepatocyte Maintenance Medium

Hepatocyte Maintenance Media

Base Hepatocyte Maintenance Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
WEM (without	490 mL	-	-	Sigma	W4128
phenol red)					
Pen / Strep	5 mL	100X	1%	Sigma	P4333
L-GlutaMAX	5 mL	100X	1%	Gibco	35050-61

- Store the base Hepatocyte Maintenance Medium at 4°C.
- Use the base Hepatocyte Maintenance Medium within 30 days of preparation.

Complete Hepatocyte Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base Hepatocyte	49.445 mL	-	-	Recipe above	-
Seeding Medium					
ITS + premix	500 μL	-	1%	Sigma	354352
Ascorbic acid	50 μL	50 mg / mL	500 μg / mL	Sigma	5960
Dexamethasone	5 μL	1 mM	100 nM	Sigma	D4902

- Store the Complete Hepatocyte Maintenance Medium at 4°C in well-labeled tubes.
- Use the Complete Hepatocyte Maintenance Medium within 3 days of preparation.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 45 of 84

Prepare Overlay Medium

Before You Begin

Slowly thaw the Matrigel aliquot on ice (which should be made slushy with water) for 30 minutes or until thawed. Keep the Matrigel aliquot in slushy ice at all times, as this solution gels rapidly at temperatures above 10°C. To maintain an even coating, use pre-chilled pipettes, tips, and tubes stored at -20°C prior to use as well as cold medium during preparation and overlay.

Hepatocyte Overlay Medium

Hepatocyte Overlay Medium (20 mL)

Hopatody to Overlay mod	\ <u></u> <u>-/</u>				
Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Complete Hepatocyte	19.5 mL	-	-	Recipe above	-
Maintenance Medium					
Matrigel	0.5 mL	10 mg / mL	0.25 mg / mL	Corning	354234

• Keep both the Matrigel aliquot and the Hepatocyte Overlay Medium on slushy ice.

Steps for preparation:

Step	Action
	Prepare the Hepatocyte Overlay Medium by diluting ice-cold, thawed Matrigel into ice-cold
1	Complete Hepatocyte Maintenance Medium using prechilled tips to a final concentration of
	0.25 mg / mL, as directed above.
	Gently mix the overlay medium well, and keep the Hepatocyte Overlay Medium on ice at all
2	times.

Note: Introducing polymerized Matrigel to chip channels can cause uneven distribution and may impact cell viability and chip performance. If any traces of solidified Matrigel are observed in the Hepatocyte Overlay Medium, discard the entire medium and prepare a fresh batch following the steps above, ensuring all reagents and equipment are kept at 4°C during this step.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 46 of 84

Overlay Hepatocytes

Steps for Overlaying Hepatocytes in Chips

Otam	A -4!			
Step	Action			
	In the BSC, quickly pipette 200 µL of warm Complete Hepatocyte			
1	Maintenance Medium through the top channel of each chip to remove			
	cell debris from the hepatocyte monolayer.			
	Aspirate the media outflow at the outlets, leaving the media within the			
2	channel.			
	Using cold tips, gently pipette 200 µL of the cold Hepatocyte Overlay			
3	Medium to the top channel of each chip, leaving droplets covering			
	both the inlets and outlet ports (See Figure 10).			
	gure 10. Chip with Hepatocyte Overlay Medium covering ports.			
4	Incubate chips overnight at 37°C.			

Steps for Overlaying Hepatocytes in Well Plates

Step	Action
	In the BSC, vigorously swirl the 24-well plate of hepatocytes to
1	release any cell debris and unattached cells from the monolayer.
2	Aspirate the medium from each well.
_	Add 500 µL of cold Hepatocyte Overlay Medium to each well and
3	return the plate to the incubator to sit overnight.

TLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 47 of 84

Day 2: Non-Parenchymal Cells (NPC) to Chip

Overview

Goals

Seed mixture of non-parenchymal cells (LSECs, Kupffer cells, and stellate cells) in the chip.

Required Materials

- NPC Seeding Medium (at 37°C)
- NPC Seeding Medium (at 4°C)
- Complete Hepatocyte Maintenance Medium (at 37°C)
- Trypan blue counting solution
- Hemocytometer
- 15-mL conical tube
- · Serological pipettes
- Pipettes and filtered tips
- · Aspirator and sterile tips
- Ice bucket and ice
- 70% ethanol
- Microscope

Key Steps

Topic	See Page
Prepare NPC Seeding Medium	48
Wash Chips	49
Harvest LSECs	50
Thaw Stellate Cells	52
Thaw Kupffer Cells	54
Combine NPC Mixture	56
Seed NPC Mixture to Bottom Channel	57
Prepare NPC Maintenance Medium	58
Gravity Wash with Tips	59

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 48 of 84

Prepare NPC Seeding Medium

Before You Begin The LSECs, Kupffer cells, and stellate cells are seeded within the bottom channel, in the NPC Seeding Medium.

NPC Seeding Media

NPC Seeding Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Complete Hepatocyte	22.5 mL	-	-	Prepared above,	-
Maintenance Medium				but omit	
(omitting				dexamethasone	
dexamethasone)					
Base LSEC Culture	22.5 mL	-	-	Prepared above	-
Medium					
FBS	5 mL	-	10%	Sigma	F4135

- Store the NPC Seeding Medium at 4°C.
- Use the NPC Seeding Medium within 3 days of preparation.

Trypan Blue Cell Counting Solution (45 μL)

Reagent	Volume	Source	Cat. No.
NPS Seeding Medium	40 µL	Recipe Above	-
Trypan Blue	5 μL	Sigma	93595

- Maintain the Trypan Blue Cell Counting Solution at room temperature prior to use.
- Prepare three tubes of the Trypan Blue Cell Counting Solution.
- Always prepare the solution fresh before each use.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 49 of 84

Wash Chips

Step	Action
	Gently pipette 200 µL of warm Complete Hepatocyte Maintenance
1	Medium into the top channel of each chip. Aspirate the outflow,
	leaving the media in the channel.
	Gently pipette 200 μL of warm NPC Seeding Medium to the bottom
2	channel of each chip. Aspirate the outflow, leaving the media in the
	channel.
3	Return the chips to incubator until the NPCs are ready for seeding.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 50 of 84

Harvest LSECs

Before You Begin

- To seed the bottom channel, LSECs in culture must be harvested and counted. LSECs are adjusted to a density of 9 x 10⁶ cells / mL (3 times the final seeding concentration) before being combined with stellate and Kupffer cells.
- If the LSECs are not as proliferative as expected, the concentration can be increased up to 12 x 10⁶ cells / mL (3 times the final seeding concentration) to form a confluent monolayer within the channel.

Step	Action
1	Bring the culture flask containing LSECs from the incubator the BSC.
2	Aspirate culture media and add 15 mL of 1X DPBS to wash the
	culture surface. Aspirate the DPBS wash.
3	Add 3 mL of trypsin-EDTA to the flask. Incubate for 2–3 minutes at
3	37°C.
	Tap the side of the flask gently. Inspect the culture under the
4	microscope to verify complete cell detachment from the culture
	surface.
5	Add 9 mL of warm NPC Seeding Medium to the flask, and pipette
3	gently to mix while collecting all cells from the culture surface.
6	Transfer the contents of the flask (12 mL) into a sterile 15-mL conical
	tube.
7	Add 3 mL of NPC Seeding Medium the tube, bringing the total volume
_ ′	to 15 mL.
8	Centrifuge LSECs at 200 x g for 5 minutes at room temperature.
	Carefully aspirate the supernatant, leaving approximately 100 µL of
9	medium above the cell pellet.
	Note: The cell pellet will be very small, so be sure to aspirate gently.
10	Loosen the cell pellet by flicking the tube gently.
11	Using a P1000 pipette, gently resuspend the cells by adding 200 μL
''	of cold NPC Seeding Medium.
	Pipette gently to create a homogenous mixture, and transfer 5 μL of
12	the cell suspension to the Trypan Blue Counting Solution. This will
	create a 1:10 dilution.
<u> </u>	

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 51 of 84

Mix the counting solution thoroughly. Count the cells using a	
13	hemocytometer (See "Cell Counting and Viability Assessment").
14	Dilute the LSECs to 9 x 10 ⁶ cells / mL (3 times the final seeding
14	concentration) in cold NPC Seeding Medium.
15	Keep the LSEC cell suspension on ice until the stellate and Kupffer
15	cells are ready.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 52 of 84

Thaw Stellate Cells

Before You Begin

Stellate cells must be thawed and counted before bottom cell seeding. Stellate cells are adjusted to a density of 0.3×10^6 cells / mL (3 times the final seeding concentration) prior to combining with LSECs and Kupffer cells.

Step	Action
1	Place 3 mL of warm NPC Seeding Medium into a sterile 15-mL conical
'	tube.
2	Remove the required number of cryopreserved stellate cell vials from
2	the liquid nitrogen.
	Spray the cryovial(s) with 70% ethanol and wipe it dry. Untwist the cap a
	quarter of a full turn to relieve any internal pressure, then retighten it.
3	Note: Adjusting the cap this way will prevent the cryovial from popping
	due to rapid expansion of any liquid nitrogen that may have been
	trapped inside the vial.
	Immediately place the frozen vial in a 37°C water bath without
	submerging the cap. Rapidly thaw the stellate cells by gently swirling the
4	vial in the water bath until only one small ice pellet remains.
	Note: This should take 60–90 seconds. Thawing for longer will result in
	decreased cell viability and yields.
5	Immediately remove the vial from the water bath, wipe it dry, spray it
3	with 70% alcohol, and dry it once more before placing it into the BSC.
6	Quickly transfer the vial's contents into the 15-mL conical tube prepared
O	in Step 1.
7	Rinse the cryovial with 1 mL of warm NPC Seeding Medium and transfer
,	it to the 15-mL conical tube.
8	Bring the volume within the conical tube to 15 mL using cold NPC
O	Seeding Medium.
0	Centrifuge stellate cells at 250 x g for 5 minutes at room temperature.
9	Once done, cool centrifuge to 4°C to prepare for Kupffer cell seeding.
	Carefully aspirate the supernatant, leaving approximately 100 µL of
10	medium above the cell pellet.
	Note: The cell pellet will be very small. Aspirate carefully.
	l .

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 53 of 84

11	Gently flick the tube to loosen the cell pellet.
12	Using a P1000 pipette, carefully resuspend the cells by adding 200 µL of
	cold NPC Seeding Medium.
	Pipette gently to recreate a homogenous mixture, and transfer 5 μL of
13	the cell suspension to the trypan blue cell counting solution (1:10
	dilution).
14	Mix the counting solution thoroughly. Count the cells using a manual
14	hemocytometer (See "Cell Counting and Viability Assessment").
	Dilute the stellate cells to 0.3 x 10 ⁶ cells / mL (3 times the final seeding
15	concentration) in cold NPC Seeding Medium and keep them on ice until
	the rest of the cells (Kupffer) are ready.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 54 of 84

Thaw Kupffer Cells

Before You Begin

- Kupffer cells must be thawed and counted for bottom channel seeding. Kupffer
 cells are adjusted to a density of 6 x 10⁶ cells / mL (3 times the final seeding
 concentration) prior to combining with LSECs and stellate cells.
- Kupffer cells are very sticky at the physiological temperature of 37°C. If the
 medium is warmed to 37°C, the Kupffer cells will attach to any substrate,
 including the walls of the conical tube and the pipette tip. Therefore, use cold NPC
 Seeding Medium and pre-chilled tips throughout the thawing process.

Step	Action
1	Place 3 mL of cold NPC Seeding Medium into a sterile 15-mL conical
'	tube.
2	Remove the required number of cryopreserved Kupffer cell vials from
2	the liquid nitrogen.
	Spray the cryovial(s) with 70% ethanol and wipe it dry. Untwist the
	cap a quarter of a full turn to relieve any internal pressure, then
3	retighten it.
	Note: Adjusting the cap this way will prevent the cryovial from
	popping due to rapid expansion of any liquid nitrogen that may have
	been trapped inside the vial.
	Immediately place the frozen vial in a 37°C water bath without
	submerging the cap. Rapidly thaw the Kupffer cells by gently swirling
4	the vials in the water bath until only one small ice pellet remains.
	Note: This should take 60–90 seconds. Thawing for longer will result
	in decreased cell viability and yields.
5	Immediately remove the vial from the water bath, wipe it dry, spray it
3	with 70% alcohol, and dry it once more before placing it into the BSC.
6	Quickly transfer the vial's contents into the 15-mL conical tube
	containing 3 mL of NPC Seeding prepared in Step 1.
7	Rinse the cryovial with 1 mL of warm NPC Seeding Medium and
'	transfer it to the 15-mL conical tube.
8	Bring the volume within the conical tube to 15 mL using cold NPC
	Seeding Medium.
9	Centrifuge the Kupffer cells at 500 x g for 5 minutes at 4°C.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 55 of 84

Steps, continued

Step	Action
	Carefully aspirate the supernatant, leaving approximately 100 µL of
10	medium above the cell pellet.
	Note: The cell pellet will be very small. Aspirate carefully.
11	Gently flick the tube to loosen the cell pellet.
12	Using a P1000 pipette, carefully resuspend the cells by adding 200 μL
12	of cold NPC Seeding Medium.
	Pipette gently to recreate a homogenous mixture, and transfer 5 μL of
13	the cell suspension to the Trypan Blue Cell Counting Solution (1:10
	dilution).
14	Mix the counting solution thoroughly. Count the cells using a
14	hemocytometer (See "Cell Counting and Viability Assessment").
	Dilute the Kupffer cells to 6.0 x 10 ⁶ cells / mL (3 times the final
15	seeding concentration) in cold NPC Seeding Medium and keep them
	on ice until use.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 56 of 84

Combine NPC Mixture

Before You Begin With all three cell types prepared and at the proper density, prepare the cell suspension mixture that will be seeded into the bottom channel.

Combining to Final Densities

The final density of each cell type in the bottom channel will be:

Cell Type	Densities
LSECs	3 x 10 ⁶ cells / mL
Stellate cells	0.1 x 10 ⁶ cells / mL
Kupffer cells	2 x 10 ⁶ cells / mL

• Mix the three NPC cell suspensions in a 1:1:1 ratio (v/v/v) inside a sterile, 15-mL conical tube on ice. Ensure there is enough seeding solution for all chips—calculate up to 15 μL per chip, leaving a small amount of extra volume.

LE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 57 of 84

Seed NPC Mixture to Bottom Channel

Before You Begin

Work with one chip at a time. After seeding the first chip, assess the cell density within the channel using a microscope, and then immediately invert the chips. Adjust the density of the cell suspension accordingly for the next chips if necessary.

Step	Action			
	Seed 15-20 µL of the combined NPC cell suspension into the bottom			
channel while aspirating the outflow.				
	After seeding, aspirate the DPBS from the reservoir and invert the			
	Chip Cradle (see Figure 11).			
2	Note: Each Chip Cradle can support up to six chips inside a Square			
	Cell Culture Dish (120 x 120 mm).			
	Place the small reservoir (15-mL conical tube cap containing			
3	sterile DPBS) inside the Square Cell Culture Dish (120 x 120			
	mm) to provide humidity for the cells. Replace the dish lid.			
Figure 11. Inverting chips during endothelial attachment				
Place the dish containing the chips into the 37°C incubator fo				
4	hours, or until the cells in the bottom channel have attached.			

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 58 of 84

Prepare NPC Maintenance Medium

NPC Maintenance Medium

NPC Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Complete Hepatocyte	24.5 mL	-	-	-	-
Maintenance Medium					
omitting Dexamethasone					
Base LSEC Culture	24.5 mL	-	-	-	-
Medium					
FBS	1 mL	-	2%	Sigma	F4135

- Store at 4°C.
- Use the NPC Maintenance Medium within three days of preparation.

Note: You can use 10% FBS if your seeding density is low for 24-48 h and then switch to 2% FBS.

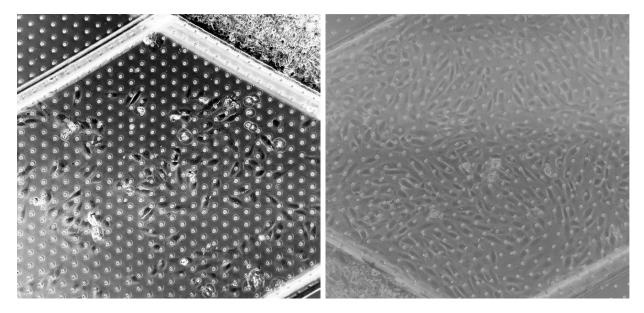


Figure 12: If seeding density is low (left), continued use of 10% FBS is recommended. If seeding density is optimal (right), culture cells with 2% FBS.

тітьє Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 59 of 84

Gravity Wash with Tips

Step	Action	
_	Once NPCs have attached (approximately 4 hours after seeding),	
1	orient the chips upright.	
	Gravity wash the top channel with 200 µL of Hepatocyte Maintenance	
	Medium and the bottom channel with NPC Maintenance Medium for	
2	each chip to provide cells with nutrients. The two media in use must	
	be maintained in filtered tips instead of drops (see Figure 13).	
Pipette tips Chip Chip Carrier Figure 13. Chip with filtered tips inserted into ports with respective media.		
3	Return the chips with pipette tips inserted into each outlet port to the	
	incubator, where they will remain overnight.	
	Maintain cells in static culture within the chips until the next day, when	
4	Pods are connected to Zoë.	
4	Note: If desired, chips can be connected as early as 2 h post	
	attachment (6 h post seeding).	

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 60 of 84

Day 3: Chips to Pods, and Pods to Zoë

Overview

Goals

- De-gas and equilibrate media
- Connect chips to Pods
- Connect Pods to Zoë

Required Materials

- Installed and qualified Zoë
- Prepared chips
- Pods (sterile), 1 per chip
- Tray, 1 per 6 chips
- Steriflip® filtration unit: PVDF filter 0.45 µm (sterile)

Key Steps

Topic	See Page
Gas Equilibration of Media	61
Prime Pods	63
Wash Chips	66
Chips to Pods	67
Pods to Zoë	68

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 61 of 84

Gas Equilibration of Media

CAUTION

The media equilibration step is imperative to successfully culture Organ-Chips. Omitting this step will cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow

Before You Begin

- Once the culture media for both chip channels have been warmed for at least 1 h, the gas equilibration step can be performed.
- Ensure the medium is outside of a warmed environment (such as an incubator or bath) for no longer than 10 minutes, as gas equilibrium can become compromised when medium is allowed to cool.
- If the vacuum pump is not located close to the water bath (e.g., inside the BSC), it is recommended to place some clean water warmed at 37°C inside the BSC to minimize cooling during the media equilibration step.

Step	Action		
	Place at least 3.3 mL of Complete Hepatocyte Maintenance Medium		
1	for each chip in a 50-mL conical tube.		
_	Place at I	east 3.3 mL of NPC Maintenance Medium for each chip in a	
2	separate	50-mL conical tube.	
	Warm bo	th 50-mL conical tubes of media at 37°C in a water bath or	
3	bead batl	n for at least 1 h.	
	Immediat	ely connect the 50-mL tube containing each warmed	
	medium to a Steriflip unit using the following steps:		
	Step	Action	
	1	Attach each conical tube containing warmed media to a	
	'	Steriflip unit (See Figure 14).	
	2	With the unit "right-side up" (medium in the bottom conical	
4		tube), apply vacuum for 10 seconds.	
		Invert the Steriflip-connected tubes, and check that the	
		medium begins to pass from the top conical tube to the	
	3	bottom tube.	
		Note: The vacuum must operate at a minimum of -70	
		kPa. At this pressure, it should take about 2 seconds for	

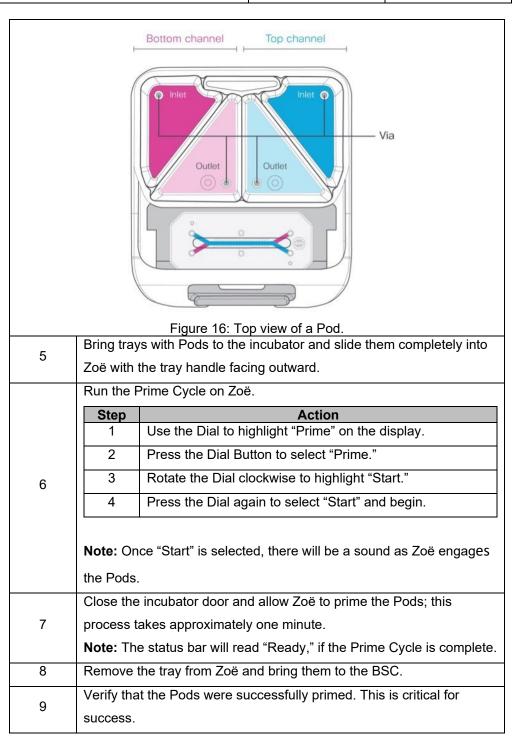
TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 62 of 84

	10 mL of media to flow through the filter. If it takes longer,		
	stop and refer to "Media take too long to pass through		
	Steriflip" in the troubleshooting section.		
		Leave the filtered medium under vacuum for at least five	
	4	minutes.	
Steriflip			
		Figure 14. Steriflip unit	
5		the vacuum tubing from the Steriflip unit.	
	Separate the conical tubes containing media from the Steriflip unit,		
	and immediately place them into the incubator with the caps loos maintain the degassed state and allow bubbles to escape.		
6			
	Note: Mir	nimize the time media is outside of the incubator when the	
	Pods are being prepared to maintain the correct temperature. This		
	critical to	ensure chip success.	
1	l		

.....

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 63 of 84

Prime Pods


CAUTION

Ensuring successful Pod priming is best practice for successful liquid-liquid connection between the chip and Pod. Failure to do so can cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.

Step	Action
	Sanitize the exterior of the Pod packaging and trays with 70%
1	ethanol, wipe them, and transfer them to the BSC.
	Open the Pod package and place the Pods into the trays. Orient the
2	Pods with the reservoirs facing the back of the tray (See Figure 15).
Pods —	
Tray handle ——	
	Figure 15. Chips and Pods inserted into a tray.
	Pipette 3 mL of pre-equilibrated, warm media to each inlet reservoir.
3	In the top channel inlet reservoir, add Complete Hepatocyte
	Maintenance Medium; in the bottom channel inlet reservoir, add NPC
	Maintenance Medium.
Pipette 300 µL of pre-equilibrated, warm media to each outlet	
4	reservoir, directly over each outlet Via (see Figure 16).

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 64 of 84

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 65 of 84

Pod Priming Verification

Take out the tray and inspect the top of the Pods (See Figure 17) to verify the presence of small media droplets through the Pod window at all four fluidic ports.

If	Then
Droplets are not visible through the top	Re-run the Prime Cycle on those Pods.
window	If the issue persists, contact Emulate
	Support.
Any outlet port does not show a	Ensure Step 4 of "Priming Steps" has
droplet, but the inlet port does.	been performed correctly.
Any media escaped onto the tray (this	Clean the tray using a wipe sprayed
may occur more often by the outlet	with 70% ethanol.
ports).	

Figure 17

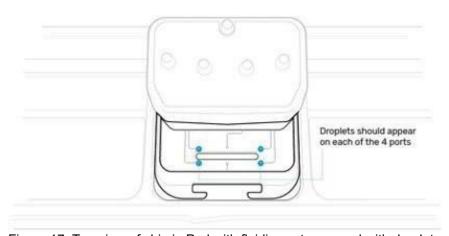


Figure 17. Top view of chip in Pod with fluidic posts covered with droplets.

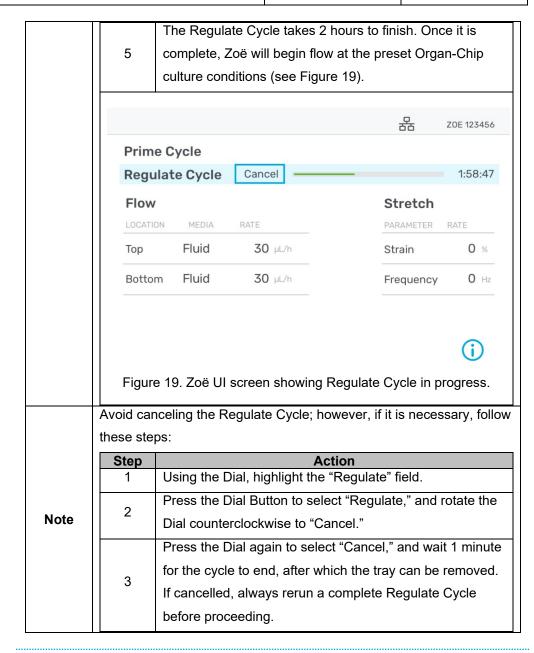
TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 66 of 84

Wash Chips

Step	Action
1	Transfer the seeded chips in the Square Cell Culture Dish (120 x 120
'	mm) from the incubator to the BSC.
2	Remove the pipette tips from the chip inlet and outlet ports.
2	Gently wash each top channel with warm, equilibrated Complete
3	Hepatocyte Maintenance Medium to remove any bubbles.
4	Place small droplets of equilibrated Complete Hepatocyte
4	Maintenance Medium on each chip's inlet and outlet port.
	Gently wash each chip's bottom channel with warm, equilibrated NPC
5	Maintenance Medium to remove any possible bubbles as well as to
	replace with de-gassed media.
6	Place small droplets of equilibrated NPC Maintenance Medium on
6	each chip's bottom channel inlet and outlet ports.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 67 of 84

Chips to Pods


Step	Action
	Hold one chip (in a chip carrier) in the dominant hand and one Pod in
1	the other hand. Slide the chip carrier into the into the tracks on the
	underside of the Pod until the chip carrier has fully seated.
2	Place a thumb on the chip carrier tab. Gently, but firmly, press the tab
2	in and up until it engages with the Pod.
3	Aspirate any excess media on the chip surface from the Pod window.
	Place the Pod and connected chip onto the tray. Additionally, clean all
4	excess media from the trays and bottoms of pods using a wipe
	sprayed with 70% ethanol.
5	Repeat Steps 1–4 for each Pod and chip carrier.
6	Confirm that there is sufficient media in each Pod inlet and outlet
0	reservoir. Also Ensure that the Pod lids are flat and secure.
_	Bring the tray to the incubator until all samples are
7	connected to keep the equilibrated media warm.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 68 of 84

Pods to Zoë

Step	Δ	ction	
Осор	Immediately place the trays holding Pods and chips into Zoë to		
1	prevent media from cooling and losing its gas equilibration.		
Program the appropriate Organ-Chip culture conditions on			
_	n as the Regulate Cycle is complete.		
2	For human Quad-Culture Liver-Chips, set the flow rate 30 μ L / h for both top and bottom channels.		
	Run the Regulate Cycle		
	Step	Action	
	1 Using the Dial, highligh	nt the "Regulate" field.	
	Press the Dial Button t	o select "Regulate," and rotate the	
	Dial clockwise to "Star	t."	
	Press the Dial again to	select "Start" and begin the	
	Regulate Cycle (see F	igure 18).	
	Note: Once start is se	lected, there will be a sound as Zoë	
	engages the Pods.		
		器 ZOE 123456	
3	Prime Cycle		
	Regulate Cycle Start		
	Flow	Stretch	
	LOCATION MEDIA RATE	PARAMETER RATE	
	Top Fluid 00 μL/h	Strain 0 %	
	Bottom Fluid 00 µL/h	Frequency 0 Hz	
		<u>i</u>	
	Figure 18. Zoë UI showing Regulate Selection		
	4 Make sure the "Activation" button is glowing blue.		

тітье Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 69 of 84

TLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 70 of 84

Day 4: Chip Maintenance and Sampling

Overview

Goals

- Maintain chips in Zoë.
- Cell culture inspection
- Collect samples for analysis

Required Materials

- Chips in Pods
- Cell culture media

Key Steps

Topic	See Page
Maintenance and the Regulate Cycle	71
Sampling and Media Replenishment	72

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 71 of 84

Maintenance and the Regulate Cycle

Step		Action	
	The day a	after connecting chips and Pods to Zoë (beginning the	
	Organ-Cl	nip culture process), pause Zoë by pressing the silver	
1	"Activatio	n" button located above the tray bays. This stops flow and	
	releases	the Pods.	
2	Slide the	tray out of the bay, and transfer it to the BSC	
	Remove	the Pod lids. Using a 200-μL pipette, perform a Via wash on	
	each Poo	inlet and outlet reservoir using the following steps:	
	Step	Action	
3		Pipette 200 µL of media from the Pod reservoir directly on	
	1	top of the Via to dislodge any bubbles that may be	
		present.	
	2	Repeat this wash step for each of the four Pod reservoirs.	
4	Place Pod lids back on and return the trays to Zoë.		
	Run the Regulate Cycle again.		
	Run the r	Regulate Cycle again.	
	Step	Action	
	Step 1	Action	
	Step	Action Using the Dial, highlight the "Regulate" field.	
	Step 1	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the	
5	1 2	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start."	
5	Step 1	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start." Press the Dial Button again to select "Start" and begin the	
5	1 2	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start." Press the Dial Button again to select "Start" and begin the Regulate Cycle.	
5	1 2	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start." Press the Dial Button again to select "Start" and begin the Regulate Cycle. Note: Once "Start" is selected, there will be a sound as	
5	Step	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start." Press the Dial Button again to select "Start" and begin the Regulate Cycle. Note: Once "Start" is selected, there will be a sound as Zoë engages the Pods.	
5	Step	Action Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start." Press the Dial Button again to select "Start" and begin the Regulate Cycle. Note: Once "Start" is selected, there will be a sound as Zoë engages the Pods. Make sure the "Activation" button is glowing blue.	
5	3 4	Using the Dial, highlight the "Regulate" field. Press the Dial Button to select "Regulate," and rotate the Dial clockwise to "Start." Press the Dial Button again to select "Start" and begin the Regulate Cycle. Note: Once "Start" is selected, there will be a sound as Zoë engages the Pods. Make sure the "Activation" button is glowing blue. The Regulate Cycle takes 2 hours to finish. Once it is	

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 72 of 84

Sampling and Media Replenishment

CAUTION

Failure to replenish media on time will cause air to be introduced into the Pod and chip, which ultimately results in cell death and may cause damage to Zoë Culture Module. Do not fill reservoir past 3.5 mL of the total volume during replenishment.

Step	Action
1	Pause Zoë by pressing the silver "Activation" button.
2	Remove the trays and place them into the BSC.
3	Visually inspect each chip for bubbles.
4	Using a microscope, assess the morphology and viability of cells in
	the chips. Capture representative images at 10X or 20X magnification
	at the following locations (see Figure 20):
	• Inlet Junction
	Center of Channel
	Outlet Junction
	Outlet Junctions Center Inlet Junctions Figure 20. Chip with marked locations for image capture.
5	Remove Pod lids and collect effluent from the Pod outlet reservoirs
	while not disturbing the Pod reservoir Vias.
6	Gently aspirate any medium not collected for analysis, ensuring that a
	thin liquid film still covers the reservoir Vias so that no air is
	introduced into them.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 73 of 84

7	Refill the Pod media reservoirs with the appropriate fresh cell culture medium. Then, perform a Via wash by pipetting 1 mL of the medium in the reservoir directly over the top of the Via to dislodge any bubbles.
8	Place the Pod lids back on and return the trays to Zoë.
9	Press the silver "Activation" button to resume pre-set Organ-Chip culture conditions. Zoë will engage when the "Activation" button glows blue.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 74 of 84

Part VII. Troubleshooting

Overview

Troubleshooting

Issue	Section	Step	Recommendation
Bubbles are	Any step related to	Any step related to	Wash the channel with the appropriate
present in	chip handling, such	chip handling,	solution until all bubbles have been
channel	as Chip Activation,	such as Chip	removed. If bubbles persist, it may be
	ECM coating, and	Activation, ECM	helpful to aspirate the channel dry and
	cell seeding.	coating, and cell	slowly re-introduce solution.
		seeding.	
Bubbles in	Any step related to	Any step related to	Since the chip material is hydrophobic,
the ports	chip handling, such	chip handling,	bubbles could get trapped at the ports.
upon	as Chip Activation,	such as Chip	Dislodge bubbles using pipette tip or
introduction	ECM coating, and	Activation, ECM	aspirate the channels and reintroduce
of media into	cell seeding.	coating, and cell	appropriate media.
the chip		seeding.	
Media take	Chips to Pods and	Equilibration of	Vacuum pressure is not reaching
too long to	Pods to Zoë	Media	-70kPa. Find an alternate vacuum
pass through			source with the appropriate pressure.
Steriflip			If this solution is unavailable, leave the
			media in the incubator with the caps
			loose for at least 2 hours before
			adding to Pods.
Pods do not	Chips to Pods and	Prime Pods	If Pods do not prime on the first
prime	Pods to Zoë		attempt, ensure that medium covers all
			Pods Vias, and run the Prime Cycle
			again. If the problems persist, record
			the Pod lot number, and replace it with
			a new Pod.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 75 of 84

			D (67 11 14 14 14 15
Screen is	Chips to Pods and	Any step related to	Power off Zoë and turn it on again. If
frozen or	Pods to Zoë;	Organ-Chip	the problem persists, contact out
unresponsive	Maintaining and	culture on Zoë	support team.
	Sampling		
Pods stuck in	Maintaining and	Any step related to	The Pod lid is not secured. Try
Zoë	Sampling	Organ-Chip	wiggling the tray to the right and left as
		culture on Zoë	you slide it out while keeping it level. If
			the problem persists, contact our
			support team.
Pods not	Maintaining and	Maintenance and	There is inherent variability with Zoë;
flowing	Sampling	Regulate	however, large fluctuations and major
properly			flow issues primarily result from
or evenly/			bubbles. To remove bubbles and allow
Bubbles			for flow, remove the chip from the Pod,
observed in			flush the chip with media, re-prime the
chip			Pod with media, and reconnect the
			chip to the Pod.

Bubbles

Potential Root
Causes of
Bubbles

If there is a high failure rate due to bubbles, or if bubbles are persistent, despite performing the above mitigation step (See Figure 21 on the next page), check for the following:

If	Then
Medium is not sufficiently equilibrated	Be sure to follow media preparations
before adding to Pods	steps in section Gas Equilibration of
	Media.
Vacuum for Steriflip too weak	Ensure that media passes through the
	Steriflip in ~10 seconds.
Incorrect Steriflip used	Confirm the correct Steriflip unit is
Incorrect Sternip used	being used (Millipore SE1M003M00).
Medium not warmed correctly before	Be sure to follow the media preparation
Steriflip step	steps in the section "Gas Equilibration
	of Media".
Insufficient priming	Disconnect the chip and re-prime the
	Pod.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 76 of 84

Overview, Continued

Figure 21 Images of Bubbles in an Organ-Chip

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 77 of 84

Part VIII: Appendices

Overview

Introduction

This section contains all the reagent and media preparation steps found in this protocol.

Contents

Topic	See Page
Reagent Aliquots	78
Media Recipes	79

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 78 of 84

Reagent Aliquots

Reagents

Fibronectin (ECM)

Reagent	Conc. [Stock]	Volume	Solvent
Fibronectin	1 mg / mL	1 mg	Cell culture grade water

Resuspend 1 mg fibronectin in 1 mL of cell culture grade water according to manufacturer's instructions.

• Create single-use volume aliquots and store them at -20°C.

Matrigel (Overlay)

Reagent	Amount	Volume
Matrigel	5 mg per aliquot	Varies per lot

The Matrigel bottle must be thawed overnight on ice either in the back of the 2–6°C refrigerator or in a cold room. Add water to ensure the ice is slushy, as the solution gels rapidly at temperatures above 10°C. Before aliquoting, use pipettes, tips, and tubes prechilled to -20°C.

• After the Matrigel is thawed, create 5-mg aliquots based on the specific stock concentration. For example, if the stock concentration is 10 mg / mL, 500 μL of solution will yield 5 mg of Matrigel.

• Store aliquots at -20°C.

Culture Supplements

Reagent	Conc. [Working]	Volume	Solvent
L-Ascorbic Acid	50 mg / mL	Calculate based on	Cell culture grade
	_	amount measured	water
Dexamethasone	10 mM	Calculate based on	Cell culture grade
		amount measured	DMSO
Dexamethasone	1 mM	Calculate based on	Cell culture grade
		amount measured	water

- Resuspend each supplement to the working concentration in the table above.
- Aliquot each supplement to single-use volumes.
- Store aliquots at -20°C.

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 79 of 84

Media Recipes

LSEC Culture Media

Base LSEC Culture Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
CSC Basal	485 mL	-	-	Cell Systems	4Z3-500
Medium					
Culture-boost	10 mL	-	2%	Cell Systems	4CB-500
Pen / strep	5 mL	-	1%	Sigma	P4333

- Store the LSEC Culture Medium at 4°C.
- Use the LSEC Culture Medium within 30 days of preparation.

Complete LSEC Culture Medium (50 mL)

	Caltaio incarant				
Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base LSEC	45 mL	-	-	Recipe Above	-
Culture					
Medium					
FBS	5 mL	-	10%	Sigma	F4135

Stor	e the	Complete	LSEC	Culture	Medium	at 4°	C.
------------------------	-------	----------	------	---------	--------	-------	----

• Use the Complete LSEC Culture Medium within 7 days of preparation.	
	Continued on next page

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 80 of 84

Hepatocyte Seeding Media

Base Hepatocyte Seeding Medium (500 mL bottle)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
WEM + (with	490 mL	-	-	Sigma	W4128
phenol red)					
Pen / Strep	5 mL	-	1%	Sigma	P4333
L-GlutaMAX	5 mL	-	1%	Gibco	35050-61

- Store the Base Hepatocyte Seeding Medium at 4°C.
- Use the Base Hepatocyte Seeding Medium within 30 days of preparation.

Complete Hepatocyte Seeding Medium (200 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base Hepatocyte	187.78 mL	-	-	Recipe Above	-
Seeding Medium					
ITS+ premix	2 mL	-	1%	Corning	354352
Ascorbic Acid	200 μL	50 mg / mL	0.05 mg / mL	Sigma	5960
Dexamethasone	20 µL	10 mM	1 μΜ	Sigma	D4092
FBS	10 mL	-	5%	Sigma	F4135

- Store the Complete Hepatocyte Seeding Medium at 4°C.
- Use the Complete Hepatocyte Seeding Medium within 3 days of preparation.

90% Percoll Solution (20 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Percoll Solution	18 mL	100%	90%	Sigma	P4937
10X DPBS (- / -)	2 mL	100%	10%	-	-

- Maintain the 90% Percoll Solution at room temperature prior to use.
- Prepare the Percoll Solution fresh for each use.

Contii	nued on next page

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 81 of 84

Hepatocyte Seeding Media, cont.

Trypan Blue Cell Counting Solution (45 µL)

y pa = com com com			
Reagent	Volume	Source	Cat. No.
Complete Hepatocyte	40 μL	Recipe Above	-
Seeding Medium			
Trypan Blue	5 μL	Sigma	93595

- Maintain the Trypan Blue Cell Counting Solution at room temperature prior to use.
- Prepare the Trypan Blue Cell Counting Solution fresh for each use.

Hepatocyte Maintenance Media

Base Hepatocyte Seeding Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
WEM (without	490 mL	-	-	Sigma	W4128
phenol red)					
Pen / Strep	5 mL	100X	1%	Sigma	P4333
L-GlutaMAX	5 mL	100X	1%	Gibco	35050-61

- Store the base Hepatocyte Maintenance Medium at 4°C.
- Use the base Hepatocyte Maintenance Medium within 30 days of preparation.

Complete Hepatocyte Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base Hepatocyte	49.445 mL	-	-	Recipe above	-
Seeding Medium					
ITS+ premix	500 µL	-	1%	Sigma	354352
Ascorbic acid 50 µL		50 mg / mL	500 μg / mL	Sigma	5960
Dexamethasone 5 μL		1 mM	100 nM	Sigma	D4902

- Store the Complete Hepatocyte Maintenance Medium at 4°C in well-labeled tubes.
- Use the Complete Hepatocyte Maintenance Medium within 3 days of preparation.

Continued on next page

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 82 of 84

Hepatocyte Overlay Medium

Hepatocyte Over Medium (20 mL)

Hopatody to O Tol Illouid	··· \- • ···-/				
Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Complete Hepatocyte	19.5 mL	-	-	Recipe	-
Maintenance Medium				Above	
Matrigel	0.5 mL	10 mg / mL	0.25 mg / mL	Corning	354234

• Keep both the Matrigel aliquot and the Hepatocyte Overlay Medium on slushy ice.

NPC Seeding Media

NPC Seeding Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Complete Hepatocyte Maintenance Medium (omitting dexamethasone)	22.5 mL	-	-	Prepared above, but omit dexamethasone	-
Base LSEC Culture Medium	22.5 mL	-	-	Prepared above	-
FBS	5 mL	-	10%	Sigma	F4135

- Store the NPC Seeding Medium at 4°C.
- Use within 3 days of preparation.

Trypan Blue Cell Counting Solution (45 μL)

Reagent	Volume	Source	Cat. No.
NPS Seeding Medium	40 μL	Recipe Above	-
Trypan Blue	5 μL	Sigma	93595

- Maintain the Trypan Blue Cell Counting Solution at room temperature prior to use.
- Prepare three tubes of the solution.

•	Alwa	ys	pre	pare	the	sol	uti	ion '	fres	h l	bet	fore	eac	hι	use.		
---	------	----	-----	------	-----	-----	-----	-------	------	-----	-----	------	-----	----	------	--	--

Continued on next page	зe

TITLE	Document EP226	Revision B
Liver-Chip Quad-Culture Protocol	Date 4-AUG-2023	Page 83 of 84

NPC Maintenance Medium

NPC Maintenance Medium (50 mL)

IN O Maniferianoe meai	<u>am (66 mz)</u>				
Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Complete Hepatocyte	24.5 mL	-	-	Prepared above,	-
Maintenance Medium				but omit	
(omitting				dexamethasone	
dexamethasone)					
Base LSEC Culture	24.5 mL	-	-	Prepared above	-
Medium					
FBS	1 mL	-	2%	Sigma	F4135

- Store at 4°C.
- Use within 3 days of preparation.

Note: You can use 10% FBS if your seeding density is low for 24-48 h and then switch to 2% FBS.

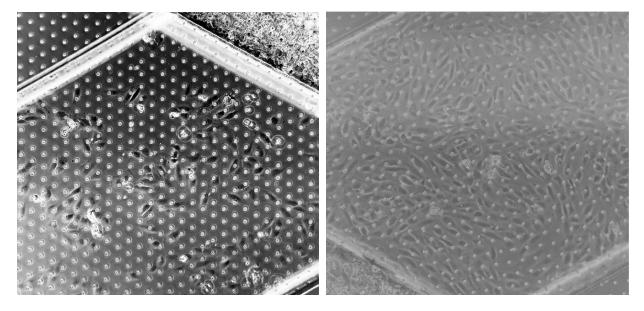


Figure 12: If seeding density is low (left), continued use of 10% FBS is recommended. If seeding density is optimal (right), culture cells with 2% FBS.

Liver-Chip Quad-Culture Protocol	Document EP226	Revision B
	Date 4-AUG-2023	Page 84 of 84

© Emulate, Inc., 202219. All rights reserved.

Zoe®, Pod-1® and Chip-S1® are trademarks of Emulate, Inc.

Steriflip[®] is registered trademarks of Merck KGaA, Darmstadt, Germany.

Eppendorf® and Eppendorf Tubes® are registered trademarks of Eppendorf AG, Germany.

Percoll[®] is a registered trademark of GE Healthcare.

Culture Boost™ is a trademark of CS Insights, Inc.

Attachment Factor™ is a trademark of CS Insights, Inc.

Matrigel™ is a trademark of Corning, Inc.

L-GlutaMAX™ is a trademark of Life Technologies Corporation.

Parafilm® is a registered trademark of Bemis Company, Inc.

Fungin® is a registered trademark of Invivogen Corporation.

The technology disclosed in this document may be covered by one or more patents or patent applications owned by or licensed to Emulate, Inc. No license is granted herein. Further information is available by contacting Emulate.