

Basic Research Kit Protocol

EP223 Rev. A

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 1 of 76

Basic Research Kit Protocol

Introduction This protocol describes the general steps for using the Emulate Basic Research Kit

In this This protocol contains the parts listed below.

tocol	Торіс	See Page
	Part I. Optimization of the Culture Environment	2
	Part II. Experimental Overview	12
	Part III. Equipment and Materials Provided	14
	Part IV. Equipment and Materials Required	15
	Part V. Chip Handling Techniques	17
	Part VI. Inspecting Chips for Bubbles Throughout	20
	the Experiment	
	Part VII. Basic Research Kit Protocol	25
	Part VIII. Useful Protocols and References	72

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 2 of 76

Part I: Optimization of the Culture Environment

Part I Overview

Introduction This section describes the key areas of focus for optimizing the culture environment.

Contents

Торіс	See Page
Optimization Overview	3
Parameters Typically Optimized	4

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 3 of 76

Optimization Overview

Overview	
Introduction	When developing new Organ-Chip models, several culture parameters should be considered, as they provide important information about cell morphology, viability, and function.
Defining Successful Criteria	Users should define the essential criteria for successfully culturing specific cell types, and they should choose readouts that accurately assess the phenotypes of interest. These readouts are organ-specific and will help identify the best conditions for culturing cells on chips.
Examples of Successful Criteria	 Some examples of success criteria parameters are: A. <i>In vivo</i>-relevant cell morphology B. Expression pattern of specific genes by RNA or protein by western blot or immunofluorescence staining C. Cell functionality (cell-type-dependent) D. Permeability values in acceptable range for specific cells and tracer E. Correct cell polarization according to <i>in vivo</i> findings
Example: Bile Canaliculi Network	Both albumin secretion by effluent analysis and live staining of the bile canaliculi network allow users to assess hepatocyte-specific functionality and confirm polarization.
Example: Colon Intestine-Chip	 For example, in the Colon Intestine-Chip, the two most important factors needed to confirm <i>in vivo</i>-related cytoarchitecture are identification of: cell-type-specific markers with immunofluorescence analysis expected polarization of cells

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 4 of 76

Parameters Typically Optimized

Overview

Introduction A brief description of the parameters that are typically optimized is provided below.

Parameters

Торіс	See Page
Cells	5
Extracellular Matrix	7
Media	8
Mechanical Forces	9

E		Document EP223	Revision A
В	asic Research Kit Protocol	Date 19-DEC-2022	Page 5 of 76
Cells			
Overview	Users can apply cell types that th research, such as: • cell lines • primary cells • induced Pluripotent Stem (• organoids		ed in their
Organoids	Organoids complement Organ-or quality source of human cells cor specific tissue at the appropriate isolated from patients with or with populated with either biopsy-deriv organoids.	ntaining the relevant ty ratios; furthermore, th nout disease. Organ-C	pes from a ey can be chips can be
Variability	When comparing phenotypes acr keep in mind the inter-subject var or patient-derived samples. Featu status can play a vital role in the capacities.	riability that is expecte ures such as age, lifes	d from human tyle, and health
Key Parameters	When culturing multiple cell types parameters that users must optim A. Seeding Density B. Seeding Order		II-related
		Cor	ntinued on next pag

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 6 of 76

Cells, continued

Parameter 1:	Users must empirically determine the optimal seeding density for each
Seeding	cell type, taking into consideration the cells' size and proliferation rate.
Density	The table below shows optimal seeding densities for several organ
	models.

Starting Guidance:

Model	Cell Type	Cell Density for Seeding Chip
Liver-Chip (Quad-	Primary Human Hepatocyte	3.5 x 10 ⁶ cells / mL
Culture)	Primary Liver Sinusoidal Endothelial Cells	3 x 10 ⁶ cells / mL
	Kupffer Cells	2 x 10 ⁶ cells / mL
	Stellate Cells	0.1 x 10 ⁶ cells / mL
Kidney-Chip	Kidney PT Epithelial Cells	1 x 10 ⁶ cells / mL
	Kidney endothelial cells	2-4 x 10 ⁶ cells / mL
Colon Intestine-Chip	Colon organoid fragments	2-3 wells from a 24-well
		plate, per chip
	Colon Human Intestinal Microvascular Endothelial Cells (cHIMECs)	8-10 x 10 ⁶ cells / mL
Duodenum Intestine- Chip	Small Intestine Human Intestinal Microvascular Endothelial Cells (siHIMECs)	8-10 x 10 ⁶ cells / mL
Alveolus Lung-Chip	Human Primary Alveolar Epithelial Cells	1 x 10 ⁶ cells / mL
	Human Primary Alveolar Endothelial Cells	5 x 10 ⁶ cells / mL
Airway Lung-Chip	Human Primary (small/large) Airway Epithelial Cells	3 x 10 ⁶ cells / mL

Parameter 2:Optimal seeding order depends upon the specific cell type'sSeeding
Orderrequirement, as some cells benefit from a period of on-chip
monoculture. For example:

- In the Liver-Chip, the primary hepatocytes are first seeded in the top channel, and the liver sinusoidal endothelial cells (LSECs) are seeded in the bottom channel two days later to allow for hepatocyte stabilization.
- The Colon Intestine-Chip allows for same-day seeding of intestinal endothelial cells (HIMECs) on the bottom channel, followed by intestinal organoids.

6

TITLE					Docu			Revision
	Basic Research	Kit Protoco	h		EP2 Da			A Page
			л Л		19-DE0			7 of 76
Extrace	llular Matrix	x (ECN	1)					
Overview	performat layer of e anchoring	An Extracellular Matrix (ECM) is required to ensure optimal cell performance within the Human Emulation System. The ECM is a thin layer of extracellular matrix proteins that provides a scaffold, anchoring the cells to the culture surface while regulating a cell's dynamic behavior.						
Starting E Optimizati		et the app ce an EC the speci ne viabilit ing an un poor cell	oropriate M is sele fic ECM ay, morpl noptimize morphol	ECM ba ected, it i compon nology, a ed ECM	ised on pu is recomm ents and and function will lead to	ublished <i>i</i> nended th concentra on of the o cell loss	<i>in vitro</i> o lat users ation tha cells. s when f	r <i>in vivo</i> t best low is
ECM Optimizati	Typically, on following		ın optimi	ze the E	CM condi	tions thro	ugh the	
Steps	Step				Action			
	1	Select of	one to th	ree of th	e most re	levant EC	M types	5.
	2				ons—one			
	3			combinat	ions (see	table belo	ow for	
	4	Select of function		ECM that	supports	cell morp	hology a	and
ЕСМ Туре								
and Test	ECM	Туре	Colla	agen I	Fibror	nectin	Mat	rigel
Conditions			High	Low	High	Low	High	Low
	Test cor	ndition 1	√					
	Test cor	ndition 2	1		\checkmark			
	Test cor		· √		· √		\checkmark	
		ndition 4	· •			\checkmark	-	1
						•		

Test condition 4	\checkmark		\checkmark	\checkmark
Test condition 5		\checkmark		
Test condition 6		\checkmark	\checkmark	
Test condition 7		\checkmark	\checkmark	\checkmark

TITLE	asic Research Kit Protocol	Document EP223 Date 19-DEC-2022	Revision A Page 9 of 76
Media			
Overview	Since the Chip-S1 experiences la channels are fluidically independe medium for each channel is cruci	ent. Selecting an optin	nal cell culture
Getting Started Optimizing Media	 To start, users can choose medium conditions for each channel based on what will work for each cell type. It is important to confirm that all cell types are viable and exhibit the expected phenotypes for the chosen media combination. This will help to prevent specific media components from interfering with cell performance in the adjacent channel (e.g., retinoic acid effects on proliferation and differentiation of multiple cell types). In these cases, users need to optimize the best medium condition to support cells in the top and bottom channels simultaneously. Typically, users can: Test 1:1 mixture of two different medium conditions. Adjust the concentration of medium supplements (e.g., growth factors for specific cell type) to find an optimal culture medium condition. 		
Media Optimization for ALI Models	For models that require Air-Liquid Lung-Chip, only one medium com in both channels (e.g., medium of Chip). Consequently, it is essentia determine the specific medium co proper phenotype of all cells on th	nposition provides nut n the vascular channe al for successful ALI c omposition that enable	rients for cells el for Lung- co-cultures to
Note: Media Storage and Preparation	Users should follow instructions for proper storage and preparation. The prepare 500 mL of base media. An ecessary supplements and prepheror short-term use.	ypically, it is recomm fterwards, users shoι	ended to first uld add the

TLE		Document EP223	Revision A
E	Basic Research Kit Protocol		Page 10 of 76
Mechanic	al Forces	· · · · · · · · · · · · · · · · · · ·	
Overview	As media flow through the chip, c forces via shear stress. The exac by the flow rate and the channel c channel can be independently se most organ models, a flow rate be increase in flow rate will cause an on the cell monolayer.	t level of shear stress dimensions. The flow r t between 0-1000 μL / etween 20-200 μL / h	is determined ates for each hour. (For s ideal). An
Stretch	The Human Emulation System er dynamic forces via cyclic mechan material. Stretch parameters (i.e. entirely dependent upon the orga they must be optimized for the tis require stretching, but some orga Intestine-Chip and Alveolus Lung replicate the motions of peristalsis	ical deformation of the , amplitude and freque n type and application sue of interest. Not all n systems—such as the -Chip—benefit from st	e chip's flexible ency) are ; therefore, cell types ne Colon
Note on Mechanical Forces	If mechanical forces that are not p to Organ-Chip models, cell viabili impacted.		
Optimizing Time	Users should optimize the timing conditions. In some cases, flow c attachment; in others, it may only Similarly, stretch can be initiated depending on the organ type and	an be initiated soon af be initiated after two o or changed at differen	ter cell days in culture.
		Con	tinued on next page

Document EP223	Revision A
Date 19-DEC-2022	Page 10 of 76

Mechanical Forces, Continued

Parameters	Liver Quad-Culture	Intestine (Colon)
ECM (top channel)	Collagen I (100 µg / mL) and Fibronectin (25 µg / mL)	Matrigel [™] (100 µg / mL) and Collagen I\ (200 µg / mL)
ECM (bottom channel)	Collagen I (100 µg / mL) and Fibronectin (25 µg / mL)	Collagen IV (200 µg/mL) and Fibronectin (30 µg / mL)
Cell type and density in top channel	Hepatocytes: 3 x 10 ⁶ cells / mL	Colon organoids: 2- wells of organoid culture per chip (fro 24-well plate culture
Cell type and density in bottom channel	Liver sinusoidal endothelial cells (LSEC): 3 x 10 ⁶ cells / mL Stellate cells: 0.1 x 10 ⁶ cells / mL Kupffer cells: 0.5 x 10 ⁶ cells / mL	Human Intestinal Microvascular Endothelial cells (HIMEC): 8-10 x 10 ⁶ cells / ml
Flow rate	30 µL / h	30 µL / h
Stretching	Not applied, as it is not physiologically relevant	Applicable - 10% strain, 0.15 Hz
Cell culture medium for top channel	Hepatocyte culture medium	Intestinal Organoid Culture medium
Cell culture medium for bottom channel	1:1 mixture of hepatocyte culture medium and LSEC culture medium omitting dexamethasone	HIMEC culture medium
Timeline	Day -1 (coating), Day 0 (hepatocyte seeding), Day 1 (hepatocyte overlay), Day 2 (bottom channel cell seeding), Day 3 (Chips to Zoë)	Day -1 (coating), Da 0 (HIMEC and Organoid seeding), Day 1 (Chips to Zoe

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 11 of 76

Part II: Experimental Overview

Part II Overview

Introduction	This section gives an overview of the experimental workflow.
Day -X: Reagent Preparation	 Prepare and aliquot reagents (media supplements, ECM, etc.)
Day -X to 0: Prepare cells for chip culture as needed	 A Cell lines and primary cells: Thaw and expand cells B iPSCs: Thaw, expand, and differentiate iPSCs C Tissue biopsy: Prepare spheroid culture from biopsy tissue and expand culture D Terminally differentiated cells: Thaw cells and seed directly on chips
Day -1: Chip Preparation	 Unpack and label chips Prepare ER-1 solution Introduce ER-1 solution to channels Activate and wash chips Prepare ECM solution Coat chips with ECM
Day 0: Seed Cells on Chips	 Wash chips Prepare cells for seeding on chip Seed cells into bottom channel Seed cells into top channel Seed a well plate (quality control of cell morphology) Gravity wash chips (2-18 hours post-seeding)
Day 1: Chips to Pods and Pods to Zoë	 Prepare complete culture media for connection and aliquot Wash chips Gas equilibration of media using Steriflip[®] workflow Prime Pods Connect chips to Pods Connect Pods to Zoë Run Regulate Cycle Begin experimental flow

TITLE		Document EP223	Revision A
Ba	asic Research Kit Protocol	Date 19-DEC-2022	Page 12 of 76

Part II Overview, Continued

Day 2+: Organ-Chip Culture Maintaining and Sampling	 Inspect chips for bubbles and cell morphology Via wash Run 2nd Regulate Cycle Add stretch (if relevant to model or application) Media replenishment Effluent sampling
Day X: Chip	 Terminate Organ-Chip culture and process for various downstream
Termination	analyses

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 14 13 of 76

Part III: Equipment and Materials Provided

Part III Overview

Requirement	Ensure all equipment, materials, and reagents provided with the
	system are accessible prior to beginning each experiment.

Provided Equipment and materials provided with the Basic Research Kit (12pack product code: OBKWER12, 24-pack product code: OBKWER24) provided below:

Equipment	Description	Quantity – 12-pack	Quantity – 24-pack
Chip-S1™ Stretchable Chip	Organ-chip consumable. Each kit comes with 3 extra chips for seeding optimization and redundancy	15	27
Pod [™] Portable Modules	Provides reservoirs for media	12	24
ER-1 [™] surface activation reagent	5 mg powder	1	1
ER-2 [™] surface activation reagent	50 mL bottle	1	1
Steriflip [®] -HV Filters	0.45 µm PVDF filter sterile for Gas Equilibration of Media	4	8

Part IV: Equipment and Materials Required

Part IV Overview

Requirement	Ensure all required equipment, materials, and reagents are accessible prior to beginning each experiment.
Note on Catalog Numbers	Exact catalog numbers are not provided for some required materials, as several brands and models are acceptable.

Required Materials A list of equipment and materials needed for this protocol in addition to the Emulate Basic Research Kit is provided below:

Equipment	Subscription	Supplier	Catalog Number
Square Cell Culture Dish (120 x 120 mm)	Sterile, 1 per 6 chips	VWR	82051-068
Handheld vacuum aspirator	-	Corning	4930
Aspirating pipettes	2 mL, polystyrene, individually wrapped	Corning / Falcon	357558
Aspirating tips	Sterile (autoclaved)	-	-
Serological pipettes	2 mL, 5 mL, 10 mL, and 25 mL low endotoxin, sterile	-	-
Pipette	P20, P200, and P1000	-	-
Pipette tips	P20, P200, and P1000 sterile, low- adhesion	-	-
Conical tubes	15 mL and 50 mL polypropylene, sterile	-	-
Eppendorf tubes	1.5 mL, sterile	-	-
Aluminum foil		-	-
Microscope (with camera)	For bright-field imaging	-	-
Hemocytometer	-	-	-
Manual counter	-	-	-

14

TITLE		Document EP223	Revision A
	Basic Research Kit Protocol	Date 19-DEC-2022	Page 15 of 76

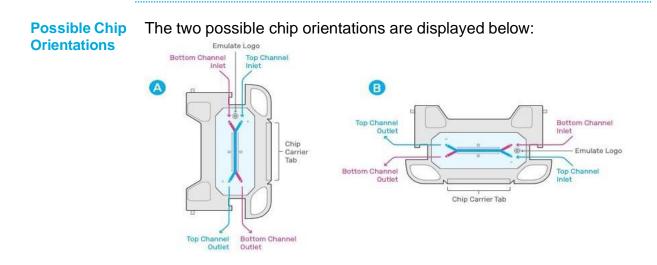
Set to 37°C		
Minimum pressure: - 70 kPa	-	-
-	-	-
-	-	-
-	-	-
-	-	-
For surface		
sterilization	-	-
0.4% solution	Sigma	93595
0.05% trypsin	Sigma	T3924
-	-	-
-	-	-
-	-	-
10,000 U / mL; 10 mg / mL	Sigma	P4333
Sterile heat- inactivated	Sigma	F4135 or F8317
10 mg / mL	InvivoGen	ANT-FN-1
P20, P200, and P1000 sterile, low- adhesion	-	-
15 mL and 50 mL polypropylene, sterile	-	-
1.5 mL, sterile	-	-
-	-	-
For bright-field imaging	-	-
	Minimum pressure: - 70 kPa - - - - - For surface sterilization 0.4% solution 0.05% trypsin 0.05% trypsin -	Minimum pressure: - - 70 kPa - - - - - - - - - - - - - - - - - - - - - - - For surface - sterilization Sigma 0.4% solution Sigma 0.05% trypsin Sigma - - - - - - - - - - 10,000 U/mL; 10 mg /mL Sigma 10 mg /mL InvivoGen P20, P200, and - P1000 sterile, low- adhesion - 15 mL and 50 mL polypropylene, sterile - 1.5 mL, sterile - - - For bright-field -

Notes for ER-1™ and ER-2™ reagents Upon arrival, maintain ER-1 powder unopened in the metalized pouch at -20°C, and store ER-2 buffer at 4°C.

TITLE		Document EP223	Revision A
	Basic Research Kit Protocol	Date 19-DEC-2022	Page 16 of 76
	 Both ER-1 and ER-2 reagen temperature for over 3 week performance of the reagents 	s, as this can compromise	

• If additional ER-1 and ER-2 are needed, these can be purchased separately from Emulate. Product codes: ER-1: RGT-ER1-5, ER-2: RGT-ER2-50.

Notes on Fungin™


- To prevent fungal contamination, add 0.1% of Fungin[™] to any Organ-Chip culture when necessary.
- This antimycotic compound kills yeasts, molds, and fungi by disrupting ionic exchange through the cell membrane. This reagent has no effect on eukaryotic cell viability or function due to its mechanism of action.

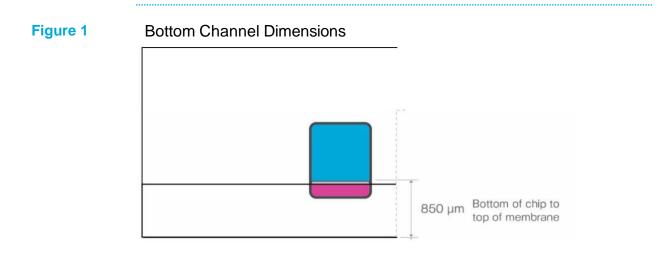
TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 17 of 76

Part V. Chip Handling Techniques

Part V Overview

- Always work with chips in a sterile environment, such as the biosafety cabinet (BSC).
 - Always avoid touching the chip directly. Handle the chip carrier only by the sides, or by the tab, with gloves.
 - Never remove the chip from the chip carrier during an experiment.

- Orientation A In this orientation, the bottom channel inlet will be on the top left of the chip, while the top channel inlet will be on the top right of the chip. Conversely, the bottom channel outlet will be on the bottom right of the chip, while the top channel outlet will be on the bottom left of the chip.
- Orientation B In this orientation, the bottom channel inlet will be on the top right of the chip, while the top channel inlet will be on the bottom right of the chip. Conversely, the bottom channel outlet will be on the bottom left of the chip, while the top channel outlet will be on the top left of the chip.


		Document EP223	Revision A	
	Basic Research Kit Protocol		Page 18 of 76	
Part V O	verview, Continued			
Pipetting	When pipetting to fill each channel, a volume of 50 μ L is generally used for the top channel, and 20 μ L is used for the bottom channel. These volumes allow for simple pipetting and a slight overfill to avoid bubbles or dry channels. All wash steps, unless otherwise stated, are performed using 200 μ L of the specific wash solution.			
Pipetting: Range of Acceptable VolumesWhile 50 μL (top channel) and 20 μL (bottom channel) are standard volumes used throughout the protocol, there can l flexibility in the actual volumes used:				
	Top Channel: 35–50 μL	Top Channel: 35–50 μL		
	Bottom Channel: 15–20 µL			
Channel and	d The specific channel and membr	ane dimensions are ou	utlined below:	
Membrane	Тор	ane dimensions are ou Channel	utlined below:	
	Тор	Channel 1000 μm x 1000 μ		
Membrane	Top Width x Height dimensions Area	Channel 1000 μm x 1000 μ 28.0 mm²		
Membrane	Top Width x Height dimensions	Channel 1000 μm x 1000 μ		
Membrane	Top Width x Height dimensions Area Volume Imaging distance from the bottom of the chip to the top of	Channel 1000 μm x 1000 μ 28.0 mm²		
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm		
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)Botto	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)BottoWidth x Height dimensions	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)Botto	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm 24.5 mm²	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)BottoWidth x Height dimensionsAreaVolume	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)BottoWidth x Height dimensionsAreaVolume	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm 24.5 mm² 5.6 μL	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)BottoWidth x Height dimensionsAreaVolumeMePore diameter	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm 24.5 mm² 5.6 μL	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)BottoWidth x Height dimensionsAreaVolumeMe	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm 24.5 mm² 5.6 μL mbrane 7.0 μm	m	
Membrane	TopWidth x Height dimensionsAreaVolumeImaging distance from the bottom of the chip to the top of membrane (See Figure 1)BottoWidth x Height dimensionsAreaVolumeMePore diameterPore spacingThickness	Channel 1000 μm x 1000 μ 28.0 mm² 28.041 μL 850 μm m Channel 1000 μm x 200 μm 24.5 mm² 5.6 μL mbrane 7.0 μm 40 μm (hexagonal	m	

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 19 of 76

Part V Overview, Continued

Pipetting Solution into Channels Use a P200 pipette with a sterile pipette tip to add solution directly to the channels of the chip as well as to coat, wash, and seed cells prior to connecting the chip to flow on Zoë. To introduce solution to the channels, place the pipette tip perpendicular to chip channel inlet, ensuring that the tip is securely in the port, and steadily dispense liquid through the channel.

Note: Always introduce liquid to the bottom channel before pipetting into the top channel (See Figure 1).

Part VI: Inspecting Chips for Bubbles Throughout the Experiment

Part VI Overview

Workflow steps that can create bubbles downstream and damage Zoë Culture Module The table of contents below contains critical workflow steps that can impact bubble formation downstream and cause damage to Zoë Culture Module. These steps are identified on their respective pages with CAUTION statements.

Торіс	See Page
Gas Equilibration of Media	54
Prime Pods	56
Media Replenishment	67

Potential

Bubble Issues and Solutions

Issue	Section	Step	Recommendation
Bubbles are present in chip ports or channel (Figure 2)	Any step related to chip handling, such as Chip Activation, washing, ECM coating, and cell seeding	Any step related to chip handling, such as Chip Activation, washing, ECM coating, and cell seeding	Wash the channel with the appropriate solution until all bubbles have been removed. If bubbles persist, it may be helpful to aspirate the channel dry and slowly re-introduce solution
Bubbles are in the ports upon introduction of media into the chip	Any step related to chip handling, such as Chip Activation, washing, ECM coating, and cell seeding	Any step related to chip handling, such as Chip Activation, washing, ECM coating, and cell seeding	Since the chip material is hydrophobic, bubbles could get trapped at the ports. Dislodge bubbles using the pipette tip or aspirate the channels and reintroduce appropriate solution.

TITLE	TLE		Documen EP223	t	Revision A
	Basic Research Kit Protocol			22	Page 21 of 76
	Media takes too long to pass through Steriflip [®]	Chips to Pods and Pods to Zoë	Gas Equilibration of Media	not rea kPa. F an alte vacuu the ap pressu solutio unava the me incuba caps l least 2	Im pressure is aching -70 Find and use ernative m source with propriate ure. If this on is ilable, leave edia in the ator with the pose for at thours before g to Pods.
	Pods do not prime	Chips to Pods and Pods to Zoë	Prime Pods	on the ensure covers and ru Cycle proble record numbe	s do not prime first attempt, e that medium s all Pod Vias, in the Prime again. If the ms persist, I the Pod lot er, and replace a new Pod.
	Screen is frozen or unresponsive	Chips to Pods and Pods to Zoë; Maintaining and Sampling	Any step related to Organ-Chip culture on Zoë	turn it the pro	[•] off Zoë and on again. If oblem persists, ot our support
	Pods are stuck in Zoë	Maintaining and Sampling	Any step related to Organ-Chip culture on Zoë	secure wigglin the rig you sl keepin the pro	od lid is not ed. Try ng the tray to ht and left as ide it out while ng it level. If oblem persists, ct our support
	Pods are not flowing properly or evenly/ Bubbles observed in chip	Maintaining and Sampling	Any step related to Organ-Chip culture on Zoë	variab howev fluctua major primai	is inherent ility with Zoë; ver, large ations and flow issues rily result from es. To remove

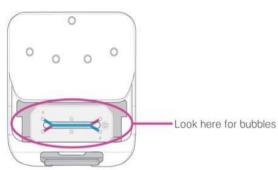
TITLE		Document EP223	Revision A
Basic Research Kit Protocol	Basic Research Kit Protocol	Date 19-DEC-2022	Page 22 of 76
		for flow chip fro flush th media, Pod wi	s and allow y, remove the om the Pod, ne chip with re-prime the th media, and ect the chip to d.

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 23 of 76

Part VI Overview, Continued

after following the mitigation steps a	above, check for the following:
lf	Then
Medium is not sufficiently	Be sure to follow media
equilibrated before adding to Pods	preparations steps in the section "Gas Equilibration of Media."
Vacuum for Steriflip [®] is too weak	Ensure that 50 mL of media can pass completely through the Steriflip in about 10 seconds.
Incorrect Steriflip® was used	Confirm the correct Steriflip [®] unit is being used (Millipore SE1M003M00).
Medium was not warmed	Be sure to follow media
correctly before the Steriflip®	preparation steps in the section "Gas Equilibration of Media."
	Disconnect chip and reprime
Insufficient priming occurring	Pod. Ensure media droplets are present in all ports.
	If Medium is not sufficiently equilibrated before adding to Pods Vacuum for Steriflip [®] is too weak Incorrect Steriflip [®] was used Medium was not warmed correctly before the Steriflip [®] step

Notes on Bubble Issues and Solutions: • It is recommended that users take note of specific lot numbers for Pods and chips and report them to Emulate for further investigation.

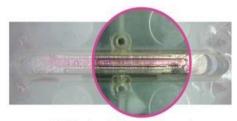

• Ensure there is enough media in pod reservoirs for culture duration and flow rate. For example, for a flow rate of $60 \ \mu\text{L}$ / h, users need to have at least 1.5 mL of media for 24 h to prevent the media from depleting and air from being introduced into the chip cultures. Please refer to details in the section "Media Replenishment."

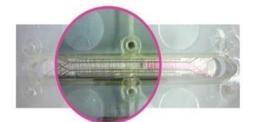
TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 24 of 76

Part VI Overview, Continued

Figure 2 Top view of chip inside chip carrier depicting different types of bubbles that can occur during Organ-Chip culture.

Images of Bubbles in Chip


Channels filled with fluid


Small bubbles in Top Channel

Both Channels dry

Bubble plug in Bottom Channel

Bubble plug in Top Channel

Bubble plug in Top Seeding

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 25 of 76

Part VII: Basic Research Kit Protocol

Protocol Overview

Introduction This section lists the basic steps for using Organ-Chips in experiments

Timeline

Торіс	See Page
Day -X: Reagent Preparation	26
Day -X to 0: Prepare Cells for Chip Culture as Needed	27
Day -1: Chip Preparation	29
Day 0: Seed Cells on Chips	40
Day 1: Chips to Pods, and Pods to Zoë	51
Day 2+: Organ-Chip Culture Maintaining and Sampling	62
Day X: Chip Termination	71

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 26 of 76

Day -X: Reagent Preparation

Day -X Procedure

Prepare and aliquot reagents (media supplements, ECM, etc.) Prepare and aliquot reagents—including media supplements and ECM—prior to use, and store at -20°C to avoid multiple freeze-thaw cycles. Reagents will depend upon the cell type being used for the Organ-Chips. For reference on the types of reagents you may need, refer to the Emulate protocol "EP079 Liver-Chip Quad-Culture."

	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 27 of 76

Day -X to 0: Prepare Cells for Chip Culture as Needed

Day -X to 0 Procedure

TITLE

Introduction Prior to chip seeding, the cells should be prepared depending on the organ model and the cell source type. When deciding the best way to prepare the cells, users should consider specific cell types' capacities to proliferate and differentiate. Typical procedures are listed below.

A. Thaw and expand cells Cell lines and most primary cells can be cryopreserved and further expanded in flasks prior to chip seeding (e.g., LSECs, HIMECs, Caco2 cells, HepG2 cells, and HUVECs). In general, cells can be thawed 2-7 days before chip seeding to allow for expansion of up to 85-90% confluency.

Furthermore, thawing cells directly onto the T75 flask with 30 mL of media and letting them attach (for at least 6 hours and at most overnight) before media change, is generally better than performing centrifugation at the time of thawing. Nevertheless, cells should be thawed, handled, and expanded according to the appropriate Emulate culture protocol, cell manufacturer's instructions, or user's specific routine protocols. Users should ensure that cell quality and cell-specific phenotypes are preserved after repeated freezing and expansion.

B. Thaw,
 expand, and
 differentiate
 iPSCs
 When iPSCs are used as a cell source for an Organ-Chip,
 differentiation into particular cell lineages requires specific
 procedures, reagents, and timelines. Consequently, the exact timing
 required to achieve specific stages can vary greatly between models.

Users should ensure that cell quality and cell-specific phenotypes are preserved after repeated freezing and expansion. Moreover, iPSC-derived cells can be seeded on the chip at the final differentiation stage (e.g., microvascular endothelial cells for Brain-Chip) or at an intermediate differentiation stage (e.g., intermediate mesoderm cells seeded on glomerulus kidney-chip) (Musah, et al 2018).

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 28 of 76

Day -X to 0 Procedure, Continued

C. Prepare spheroid culture from biopsy tissue and expand culture	Since spheroids isolated from patient-derived biopsies are composed of multiple cell types, they are a great cell source for chips. Standard methods can be used to generate tissue fragments of adequate size and culture them in 3D Matrigel systems for <i>in vitro</i> expansion prior to seeding them on chips.
D. Thaw cells and directly seed on chips	Some cells are terminally differentiated and cannot be expanded <i>in vitro</i> (e.g., human primary hepatocytes, human Kupffer cells, and human Stellate cells). In those cases, cells can be cryopreserved from the initial biopsy and thawed only on the day of chip seeding. Upon thawing, cells are washed and counted in the presence of Trypan Blue to estimate cell viability. A cell solution, prepared with the seeding density of choice, is used to seed the top or bottom channel of ECM-coated chips. Chips are incubated at 37°C undisturbed for at least 2 hours and at most overnight in order to allow the cells to attach to the membrane (incubation time is cell-type dependent).

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 29 of 76

Day -1: Chip Preparation

Day -1 Procedure

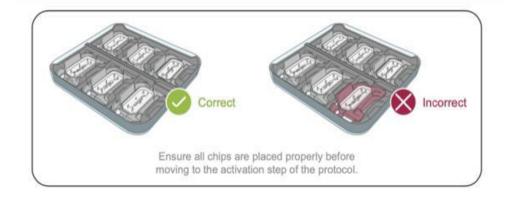
Introduction	Chip preparation includes activating the chip surface with UV light and ER-1 solution before coating it with ECM—a thin layer of extracellular proteins that anchors the cells to the chip surface. The use of an ECM is required to ensure optimal cell performance with the Human Emulation System. Users can choose the optimal ECM for the cell types being used in the chips.
Goals	 Activate the inner surface of the chip channels for proper ECM coating Coat the inner channels with ECM proteins for cell attachment
Required Materials	 Chip-S1[™] (12 chips per Zoë[™] culture module) Chip Cradle (2 are shipped per Zoë[™] culture module) ER-1[™] powder ER-2[™] buffer 15 mL conical tubes DPBS (-/-) on ice 70% ethanol ECM components 120 X 120 mm cell culture dish Ice and ice bucket Pipettes and filtered tips Aspirator and sterile tips Aluminum foil UV light box UV safety glasses

Key Steps

Step	See Page
Unpack and label chips	30
Prepare ER-1 Solution	31
Introduce ER-1 solution to channels	32
Activate and wash chips	34
Prepare ECM solution	35
Coat chips with ECM	37

Document EP223	Revision A
Date 19-DEC-2022	Page 30 of 76

Unpack and label chips


Steps

Step	Action
1	Spray the chip packaging, square cell culture dish packaging, and autoclaved Chip Cradle with 70% ethanol, and bring them into the BSC.
2	Open the Chip Cradle sterile packaging. 2 Chip Cradles are shipped 2 per Zoë Culture Module. If necessary, additional cradles can be purchased from Emulate.
3	Place the Chip Cradle into the square dish, making sure it is oriented properly (corners facing up).
4	Open the chip packaging carefully and pick up the chip.
5	Label the chip carrier tab with ID numbers for each chip needed in the experiment. Place the first chip into the Chip Cradle by sliding the back of the carrier under the tabs on the cradle (See Figure 3).
6	Open the remaining chips necessary for the experiment and place them into the cradle. Note that 1 Chip Cradle can support up to 6 chips.

Figure 3

Place chips by sliding them under the tabs of the Chip Cradle.

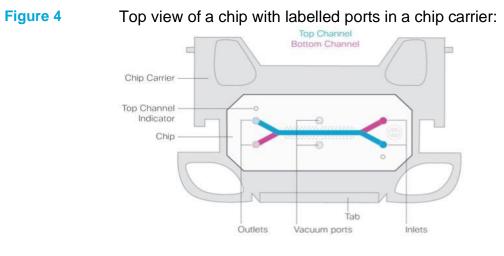
TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 32 of 76

Prepare ER-1[™] solution

ER-1 ER-1 is light-sensitive. Prepare ER-1 solution immediately before use and discard any remaining ER-1 solution 1 hour after reconstitution. Using ER-1 solution that has been exposed to light or that has not been freshly prepared will lead to chip failure.

Note: ER-1 is an eye irritant and must be handled in the BSC with proper gloves and eye protection.

Steps

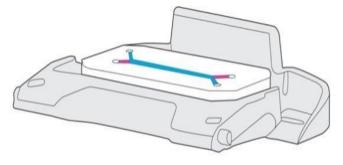

The steps for Preparing ER-1 Solution are as follows:

Step	Action
1	Turn off the BSC light, and allow the ER-1 and ER-2
	reagents to equilibrate to room temperature (which will
	take approximately 10 to 15 minutes) before use.
2	Wrap an empty, sterile, 15-mL conical tube with foil to protect it from light.
-	
3 In the BSC, remove the small vial of ER-1 powder fr	
	packet. Briefly tap the vial to concentrate the powder
	at the bottom.
4	Add 1 mL of ER-2 buffer to the vial, and transfer the
	contents directly to the bottom of the 15 mL conical tube.
	Do not pipette to mix.
	Note: The color of the solution transferred to the conical
	tube will be deep red.
5	Add an additional 1 mL of ER-2 buffer to the ER-1 vial to
	collect any remaining material, and transfer the solution
	directly to the 15 mL conical tube.
6	Repeat Step 5 twice more, adding another 1 mL of ER-2
	buffer each time.
	Note: On the last addition of 1 mL ER-2 to the ER-1 bottle,
	cap and invert the bottle to collect any remaining ER-1
	powder in the lid. Transfer the collected solution to the
	conical tube, bringing the total volume in the tube to 4 mL
	of ER-1 solution.
7	Add 6 mL of ER-2 solution to the 4 mL of ER-1 solution in
	the 15 mL conical tube for a final working concentration of
	0.5 mg / mL. Pipette gently to mix without creating
	bubbles. ER-1 should be fully dissolved within the ER-2
	solution prior to use.

31

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 33 of 76

Introduce ER-1 solution to the channels


Steps for Introducing ER-1 to channels

Step	Action
1	Using a P200 pipette and a sterile 200 μ L filtered pipette tip, collect 200 μ L of ER-1 solution. Note: 200 μ L of ER-1 solution will fill approximately 3 chips.
2	Working with one chip at a time, carefully introduce ER-1 solution through the bottom channel inlet until the solution begins to exit the bottom channel outlet.
3	Without releasing the pipetting plunger, take the pipette out from the bottom channel inlet, and place it on the top channel inlet to introduce ER-1 solution.
4	Repeat steps 2 and 3 for each chip.
5	Gently aspirate all ER-1 solution from the surface of the chip. Be sure to remove ER-1 solution only from the chip surface—do not aspirate ER-1 from the channels.
6	Repeat Steps 1 through 5 for each chip.
7	Inspect the channels for bubbles prior to UV activation. If bubbles are present, dislodge them by washing the channel with ER-1 solution until they have all been removed. If bubbles persist, it may be helpful to aspirate the channel until it is dry and then slowly re-introduce the ER-1 solution

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 34 of 76

Introduce ER-1 solution to the channels, Continued

Figure 5 View of a chip with no excess ER-1 solution on its surface:

Document EP223	Revision A
Date 19-DEC-2022	Page 35 of 76

Activate and wash chips

01-	
Ste	ps

The steps for activating and washing chips are as follows:

Step	Action		
1	Bring the square dish containing the ER-1-filled chips to		
	the UV light box.		
2	Remove the cover from the dish. Place the uncovered dish		
	in the UV light box.		
3	Set the switch at the back of the UV light box to the		
	"Constant" setting. Turn the device power on, and press		
	the red "On" button to begin UV activation.		
4	Allow the chips to activate under UV light for 20 minutes.		
5	While the chips are being treated, prepare the ECM		
	Solution. (For more information, see the next section)		
6	After UV treatment, close the dish, and bring the chips		
	back to the BSC.		
	Note: The light in the BSC may be on from this point		
	forward.		
7	Fully aspirate the ER-1 solution from both channels.		
8	Wash each channel with 200 μ L of ER-2 solution.		
9	Fully aspirate the ER-2 from the channels.		
10	Wash each channel with 200 μ L of sterile cold DPBS.		
11	Leave cold DPBS inside the channels.		

Document	Revision
EP223	A
Date	Page
19-DEC-2022	36 of 76
	EP223 Date

Prepare ECM solution

ECM Overview	ECM solutions are prepared fresh each time by combining the individual ECM components with cold, sterile DPBS to the final working concentrations. ECM solutions will be used to coat both the top and bottom channels.
Note on Coating	In some models, such as the human Liver-Chip and human Brain- Chip, the same solution is used to coat both channels. In other models, such as the human Colon and Duodenum Intestine-Chips, the channels must be coated with different solutions to ensure proper cell functionality.
Example: ECM for Liver-Chip	ECM composition and concentration should be optimized for any new Organ-Chip model prior to beginning studies. Below is an example of proper ECM solution preparation under optimal conditions for the human Liver-Chip.

ECM working concentration is:

Collagen I: 100 µg / mL

Fibronectin: 25 µg / mL

Step	Action
1	Bring an ice bucket and ice to the BSC.
2	Thaw one aliquot of fibronectin (1 mg / mL) on ice. Maintain all ECM components and solutions on ice at all times.
3	 Calculate the total volume of ECM solution needed to coat all chips. Volume required per chip = approximately 100 µL For every 12 chips to be coated, prepare 1.5 mL of ECM solution (12 chips x 100 µL / chip + extra 300 µL = 1.5 mL of ECM solution). See calculation examples below.
4	Combine components to prepare ECM working solution
5	Keep the ECM solution on ice until it is ready to use.

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 37 of 76

Prepare ECM solution, Continued

Example Calculation: Liver-Chip

ECM Calculation Example (C1V1 = C2V2)

Solution	Concentration
Collagen I stock concentration	8.41 mg / mL (C1)
Collagen I final concentration	0.1 mg / mL (C2)
Fibronectin stock concentration	1 mg / mL (C1)
Fibronectin final concentration	0.025 mg / mL (C2)
Stock volume	collagen I (X) or fibronectin (Y) (V1)
Final volume of ECM solution	1.5 mL (V2)

Collagen calculation:

 $(8.41 \text{ mg}/\text{mL}) \times (X \text{ mL}) = (0.1 \text{ mg}/\text{mL}) \times (1.5 \text{ mL})$

 $X = 17.83 \ \mu L$ of collagen I stock solution

Fibronectin calculation:

 $(1 \text{ mg} / \text{mL}) \times (Y \text{ mL}) = (0.025 \text{ mg} / \text{mL}) \times (1.5 \text{ mL})$

 $Y = 37.5 \ \mu L$ of fibronectin

DPBS

Volume DPBS =

(total volume of ECM needed) – (volume of collagen I) – (volume of fibronectin)

= 1500 μL – 17.83 μL – 37.5 μL

= 1444.67 µL of DPBS

TITLE

Document	Revision
EP223	A
Date	Page
19-DEC-2022	38 of 76

Coat chips with ECM

Steps

The steps for coating chips with ECM are as follows:

The steps	The steps for coating chips with ECIVI are as follows:		
Step	Action		
1	Fully aspirate the cold DPBS from both channels.		
2	Set a P200 pipette to take up 200 μ L of ECM solution.		
	Note: If using the same ECM solution for both channels, it		
	is recommended to fill the bottom channel and the top		
	channel—in that order—before moving to the next chip.		
	However, if using two different ECM solutions, it is		
	recommended to fill the bottom channels of each chip		
	within one cradle first, then change pipette tips to fill the		
	top channels.		
3	Carefully introduce ECM solution through the bottom		
	channel inlet until a small ECM droplet forms on the outlet.		
4	Without releasing the pipetting plunger, take the pipette		
	out from the bottom channel inlet and move the pipette		
	containing the remaining ECM solution to the next inlet		
	(this may be either a top or bottom inlet depending on the		
	number of ECM solutions used per chip). Introduce ECM		
	solution through the next inlet, leaving small droplets of		
	excess ECM solution on both ports in both channels (See		
	Figure 6).		
5	Inspect each channel to ensure there are no bubbles. If		
	bubbles are present, wash the channel with ECM solution until they have all been removed.		
6	Repeat steps 1 through 6 for each chip.		
7	Fill the chip cradle reservoir with 750 mL of DPBS to		
1	provide extra humidity (See Figure 7).		
	Note: The ECM droplets may combine if the same		
	components are being used in both channels. Care should		
	be taken when using different solutions in order to prevent		
	them from mixing.		
L			

Continued on next page

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 38 of 76

Coat chips with ECM, Continued

Figure 6 Image of a chip carrier containing a chip with small droplets of ECM solution at its ports:

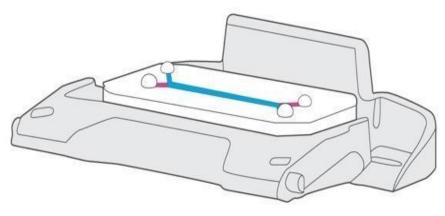
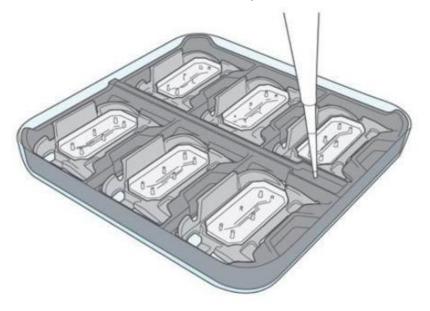



Figure 7 Fill the central reservoir of the Chip Cradle with 0.75 mL of DPBS:

Continued on next page

Document EP223	Revision A
Date 19-DEC-2022	Page 39 of 76

Coat chips with ECM, Continued

Next Step

Use the table below to determine next steps after coating the chips with ECM:

If the	Then	And on seeding day
Cells will be seeded the following day (preferred method with best results) Cells will be seeded the same day as chip activation and ECM coating	Incubate the chips containing ECM solution overnight at 37°C Incubate the chips containing ECM solution for at least 2 h at 37°C prior to seeding	Wash chips with cell seeding media and place them in the incubator until cells are ready to be seeded
Cells will be seeded after 2-5 days (Chips can be stored at 4°C for up to 1 week as long as they are kept moist)	 A. Seal the dish with parafilm, and B. Incubate the chips at 4°C 	 A. Remove the parafilm wrap B. Incubate the chips containing ECM solution for at least 2 h at 37°C C. Wash chips with cell seeding media, and place them into the incubator until cells are ready to be seeded

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 40 of 76

Day 0: Seed Cells on Chips

Day 0 Procedure

Introduction Chips can be seeded with a variety of cell types and cell sources. The seeding order and density should be empirically determined by the user.

Considerations Considerations for seeding cells on chips:

lf	Then
The bottom channel is being seeded	Use 15-20 µL
The top channel is being seeded	Use 35-40 µL
The cell suspension is ready for chip seeding	Seed only one chip and inspect under the microscope to confirm proper cell density. Adjust accordingly, if needed, before seeding the remaining chips
The bottom channel has just been seeded	Quickly invert the chip to allow the cells to adhere to the opposite side of the porous membrane. Users can invert all chips simultaneously by inverting the Chip Cradle (See Figure 8).
The application requires obtaining the vascular channel's full lumen (i.e., cells attached to upper and lower surface of the bottom channel)	Users can seed the bottom channel in two consecutive steps using two flasks of cells, allowing them to attach to both the upper and lower surfaces at each step.
More than one cell type is being seeded into either channel	The model must first be optimized. To find more information and example protocols, refer to the Emulate website for specific Organ-Chip Culture protocols at https://emulatebio.com/support/

Continued on next page

40

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 41 of 76

Day 0 Procedure, Continued

Tips	 Tips for successful chip seeding: Inject cells into the chip quickly (1-second technique) se distribute evenly throughout the channel. A slow inject generate a gradient of cells that puts higher densities to and lower densities towards outlets. Ensure all media is aspirated from the chip surface be injecting the cells. Culture media surrounding ports cat gradients on inlet and outlet regions. Use the aspirator to hold the chip in place while removing this will prevent chip displacement in the chip carrier a as uneven cell distribution within channels. 	ion will cowards inlets fore and after in cause local ing the pipette.
Key Steps		
	Steps	See Page
	Wash chips	42
	Prepare cells for seeding on chip	43
	Seed cells into bottom channel	45
	Seed cells into top channel	47
	Seed a well plate (quality control of cell morphology)	49
	Gravity wash chips (2-18 hours post-seeding)	50
Required Materials	 Complete cell-seeding media for all cell types (at 37°C 1X DPBS (at room temperature) Serological pipettes Pipettes and filtered tips Aspirator and sterile tips 15 mL conical tubes Diluted Trypan Blue counting solution Hemocytometer 70% ethanol Cell culture microscope 	;)

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 42 of 76

Wash chips

Steps

The steps for washing chips are as follows:

Step	Action
1	Transfer ECM-coated chips from the incubator into the BSC.
2	Gently wash both channels of the chip with 200 μ L of complete cell culture medium for the first cell type to be seeded. Aspirate the excess medium outflow on the surface of the chips, leaving enough medium to cover the inlet and outlet ports.
3	Cover the square dish. Place the chips in the incubator until the cells are ready to be seeded.

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 44 of 76

Prepare cells for seeding on chip

Collecting Cells	Regardless of the cells' type or source, they will require collection from flask, tube, or plate, washing and density adjustment.
Reagents	Reagents such as Trypsin, TrypLE, Accutase, and Cell recovery solution can be used to obtain single cell suspensions of samples expanded <i>in vitro</i> prior to seeding chips.
Counting Cells	We recommend counting cells in the presence of Trypan Blue to estimate the viability. For the best chip performance, only seed cell populations exhibiting 85% viability or higher.
Adjusting Cell Density	Following cell counting and viability determination, adjust the cell solution to the desired density. Ensure that enough seeding solution is prepared to seed all chips within an experiment.
Note: Adjusting Cell Density	If there is not enough volume of cell suspension available, you may pipette additional media and count the cells again. This will allow all chips to be seeded at a cost of decreased cell density. This approach is not recommended when seeding non-proliferative cells, as they will not form a confluent monolayer.
	Continued on next page

Prepare cells for seeding on chip, Continued

 Example: Cell
 Example of cell density adjustment:

 Density
 Adjustment
 Variable
 Definition

 C1
 viable cell yield
 C2
 optimal final density

U	
C2	optimal final density
V1	volume of cell suspension to dilute
V2	volume of cell suspension needed to seed all chips

Determine volume of cell suspension to dilute by solving for V1 using

the equation C1V1 = C2V2

- 1) Determine the values for C1, C2, and V2
 - a. C1: for this example, let's assume 10 x 10⁶ cells / mL)
 - b. C2: (2 x 10⁶ cells / mL)
 - c. V2:
 - i. Number chips seeded = 20
 - ii. Volume of cell suspension to seed one chip (~35 μ L)

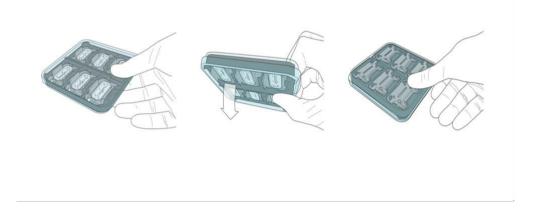
iii. $20 \times 35 = 700 \ \mu L \text{ or } 0.700 \ m L$

- 2) Use the equation to solve for V1:
 - a. (10 x 10⁶ cells / mL) x V1 = (2 x 10⁶ cells / mL) x (0.7 mL)
 - b. $V1 = 0.140 \text{ mL or } 140 \text{ }\mu\text{L}$
- 3) Determine media volume needed by subtracting V1 from V2
 - a. 700 μL 140 μL = 560 μL
 - b. Dilute 140 μL of cell suspension with additional 560 μL of

media to obtain 2 x 10⁶ cells / mL final concentration

Seed cells into bottom channel

Overview


For most Organ-Chip models, the bottom channel is populated by tissue-specific endothelial cells to emulate the vascular lumen. However, other cell types can be used in addition to, or instead of, endothelial cells. In the Liver-Chip Quad-culture, for example, Kupffer cells and Stellate cells are seeded simultaneously with LSECs, and all cells are co-cultured in the bottom channel.

Steps

Step	Action
1	Bring the square dish containing the ECM-coated,
	washed chips to the BSC.
2	While avoiding contact with the ports, gently aspirate
	medium droplets from the surface of one chip.
3	Gently agitate the cell suspension before seeding each
	chip to ensure a homogeneous cell suspension.
4	Seed 15 to 20 μ L of the cell suspension into the bottom
	channel while aspirating the outflow.
5	Cover the dish and transfer it to the microscope to confirm
	proper seeding density within the chip.
6	If the seeding density is not optimal or cell distribution is
	not even, return the chips to the BSC and wash the
	channel with 200 µL of fresh medium twice. Do not
	aspirate the medium from the channel. Adjust cell density
	accordingly, and repeat steps 3 through 5 until the correct
7	density is achieved within the channel.
/	After confirming the correct cell density, seed the remaining chips in one dish.
	Note: Minimize the amount of time the cells are outside
	the incubator by seeding no more than 6 chips at a time
	and by immediately placing the chips in the incubator at
	37°C after seeding each batch of 6.
8	Once all 6 chips have been seeded in the cradle, cover
•	the dish and then carefully invert it (Figure 8).
	Note: After seeding the bottom channel, chips should be
	inverted as soon as possible to ensure cells attach to the
	upper side of the bottom channel.
9	To prevent evaporation during incubation, fill the central
	reservoir with 0.75 mL of DPBS and then place the cover
	onto the square dish.
10	Seed the remaining chips.
11	Incubate chips in the 37°C incubator for approximately 2
	hours or until cells have attached.

TITLE			Document EP223	Revision A
Basic Research Kit Protocol		Date 19-DEC-2022	Page 46 of 76	
	12	Upon cell attachment, reservoir, and flip the o Note 1: It is essential density to prevent chip Note 2: If full vascular above with additional e in the upright position bottom of the channel.	dish back to an upright to achieve the correct failure. Iumen is desired, repe endothelial cells, and ir to allow the cells to att	position. seeding eat the steps ncubate chips

Figure 8 Inverting chips before endothelial cell attachment:

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 47 of 76

Seed cells into top channel

Overview The top channel of any Organ-Chip model is typically populated by tissue-specific epithelial cells that provide the characteristic function of the organ of interest (e.g., Intestine-Chip, Kidney PT-Chip and Lung-Chip). However, other cell types can be seeded alongside, or instead of, epithelial cells.

Example: Brain-Chip	On the Brain-Chip, neurons, astrocytes, pericytes, and microglia are seeded simultaneously, and all cells are co-cultured in the top channel.
------------------------	---

Steps

Step	Action
1	Bring the square dish containing the ECM-coated,
•	washed chips to the BSC.
2	While avoiding contact with the ports, gently aspirate
_	medium droplets from the surface of one chip.
3	Gently agitate the cell suspension before seeding each
Ū	chip to ensure a homogeneous cell suspension.
4	Seed 35 to 50 μ L of the cell suspension into the top
	channel while aspirating the outflow.
5	Cover and transfer the dish to the microscope to confirm
	proper seeding density within the chip.
6	If the seeding density is not optimal or cell distribution is
	not even, return the chips to the BSC and wash the
	channel with 200 µL of fresh medium twice. Do not
	aspirate the medium from the channel. Adjust cell density
	accordingly, and repeat steps 3 through 5 until the correct
	density is achieved within the channel.
7	After confirming the correct cell density, seed the
	remaining chips in one dish.
	Note: Minimize the amount of time the cells are outside
	the incubator by seeding up to 6 chips at a time and then
	immediately placing them into the 37°C incubator.
8	To prevent evaporation during incubation, fill the central
	reservoir with 0.75 mL of DPBS and then place the cover
	onto the square dish.
9	Seed the remaining chips
10	Incubate chips at 37°C for approximately 2 hours or until
	cells have attached.

TITLE			Document EP223	Revision A
	Basic Research Kit Protocol		Date 19-DEC-2022	Page 48 of 76
	11	reservoir, and flip the	birate DPBS from the c dish back to an uprigh g density is essential to	t position.

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 49 of 76

Seed a well plate (quality control of cell morphology)

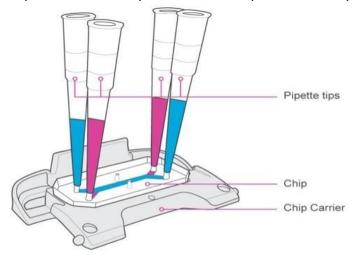
Overview It is recommended to always seed any remaining cells into a 24-well plate as a control for cell quality. Ideally, plates should be coated with the same ECM solution applied to the chips, but collagen I pre-coated plates can also be used.

Steps Use the steps below to empirically find adequate cell seeding density for a 24-well plate:

Step	Action
1	Further dilute the cell suspension with warm medium to a final cell density of 0.8×10^6 cells / mL.
2	Add 400, 500, and 600 μ L of the cell suspension to 3 separate wells of the 24-well plate, respectively.
3	Mix each well to ensure an even suspension. Allow the cells to settle for 5 minutes on the microscope stage with the light off. Inspect densities under the microscope.
4	Determine which of the wells depicts the optimal seeding density and then seed the remaining cells using the chosen volume into as many wells as desired.
5	In the incubator, disperse the cells evenly across the bottom of the culture wells by moving the plate in a figure eight motion across the shelf at least 3 times while keeping the plate flat on the surface of the incubator. Once the cells are dispersed, do not disturb the plate until the next day to allow the cells to fully attach.

Gravity wash chips (2-18 hours post seeding)

Overview Once the cells in the chip have attached, a gentle gravity wash should be performed. The specific timing of the wash is cell-type-dependent and should be determined by the user. This step is important to ensure that nutrients are replenished and that the channels do not dry out; therefore, each channel should be washed with the relevant media for the particular cell being seeded. Since two media are being used, they must be separated by keeping them in filtered tips.


Steps

The steps for performing a gravity wash on the chips is as follows:

Step	Action
1	Add empty tips to both outlet ports.
2	With a P200 pipette, gently introduce media into the inlet ports one channel at a time—starting with bottom channel—until medium is observed flowing into the empty tip in the outlet port.
3	Disconnect pipette from tip, leaving the tip inserted in chip ports (See Figure 9).
4	Incubate the chips overnight at 37°C.
5	Maintain the cells in static culture within the chips until connecting them to Pods and Zoë. Note: If cells are fully attached, the chips can be connected 2 hours after seeding.

Figure 9

Chips with filtered tips inserted into ports with respective media:

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 51 of 76

Day 1: Chips to Pods, and Pods to Zoë

Day 1 Procedure

Goals

- De-gas and equilibrate media
- Connect chips to Pods
- Connect Pods to Zoë

Key Steps

Steps	See Page
Prepare complete culture media for connection and	52
aliquot	
Wash chips	53
Gas equilibration of media	54
Prime Pods	56
Connect chips to Pods	59
Connect Pods to Zoë	60

Required Materials

- Installed and qualified Zoë
- Prepared chips
- Pods (sterile)—1 per chip
- Tray-1 per 6 chips
- Steriflip® filtration unit: PVDF filter 0.45 µm (sterile)
- Vacuum source (minimum -70 kPa)
- Serological pipettes
- Pipettors and filtered tips
- 37°C water or bead bath
- 70% ethanol

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 52 of 76

Prepare complete culture media for connection and aliquot

Overview On the day of chip connection, prepare a sufficient volume of complete cell culture medium for each chip channel (e.g., epithelial cell and endothelial cell culture media). The amount of medium needed depends on how many chips will be connected to the flow. It is generally recommended to prepare at least 3.5 mL of each medium type per chip; however, users are encouraged to make slightly more to account for possible pipetting errors.

Steps for Aliquoting	Step	ne media as follows: Action
	1	Aliquot 500 µL or more of complete medium for each channel per chip into fresh tubes and warm at 37°C to wash chips.
	2	Aliquot 3 mL or more of complete medium for each channel, per chip, into fresh 50 mL conical tubes for chip connection to flow. Warm these media at 37°C for at least 1 hour before gas equilibration.

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 54 of 76

Wash chips

Steps

The steps for washing chips are as follows:

Action
Transfer the seeded chips in the square dish from the
incubator to the BSC.
Remove the pipette tips from the chip inlet and outlet
ports.
Gently wash both channels of each chip with 100-200 μ L
of the appropriate warm cell culture medium to remove
any possible bubbles in the channels.
For every chip, place small droplets of medium onto the
top of each inlet and outlet port.
Place chips back in incubator until the Pods are ready for
connection.

Note on Media Mixture It is fine if the media mixes at this step. The most important thing is to ensure that all ports are covered with media so that a liquid-liquid interface will be formed when connecting to Pod.

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 54 of 76

Gas Equilibration of Media

CAUTION		The media equilibration step is imperative to successfully culture Organ-Chips. Omitting this step will cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.
Overview		culture media for both chip channels have been warmed for h, the gas equilibration step can be performed.
Note on Work Environment	environm minutes,	ckly and ensure the medium is not outside of a warmed ent—such as an incubator or bath—for longer than 10 as gas equilibrium can become compromised when the s allowed to cool.
Note on Cooling	the BSC)	uum pump is not located close to the water bath (e.g., inside , it is recommended to place some clean water warmed at de the BSC in order to minimize cooling during the media ion step.
Steps	The steps	s for equilibrating media are as follows:
	Step	Action
	1	Bring tubes containing warm media to BSC.
	2	Immediately connect each 50 mL tube to a Steriflip [®] unit (See Figure 10).
	3	With the unit "right-side up" (medium in the bottom conical tube), apply vacuum for 10 seconds.
	4	Invert the Steriflip-connected tubes, and check that the medium begins to pass from the top conical tube to the lower tube.
		Note 1: The vacuum source must operate at least -70 kPa. At this correct pressure, it should take about 2
		seconds for every 10 mL of medium to flow through the
		filter. If it takes longer, stop, and see the troubleshooting
		section— "medium not equilibrated properly". Leave the
		filtered medium under vacuum for 5 minutes.
		Note 2: If possible, keep media warm at 37°C (on beads
		or water bath) during the degassing step to ensure best efficiency.
	5	Remove the vacuum tubing from the Steriflip [®] units.
	6	Separate the conical tubes containing media from the Steriflip [®] unit. Immediately place the conical tubes

TITLE		Document EP223	Revision A
Basic Research Kit Protocol	Basic Research Kit Protocol	Date 19-DEC-2022	Page 55 of 76
		the incubator with the ca	

ensure that media remains equilibrated with incubator gas conditions.

Note on Media Temperature Minimize the time media is outside of the incubator during Pod preparation to maintain temperature. This is a very important step to prevent chip failure.

Figure 10 Illustration of Steriflip[®] unit:

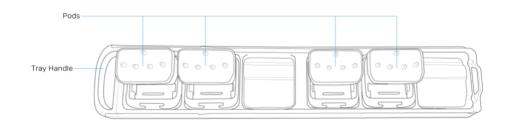
TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 56 of 76

Prime Pods

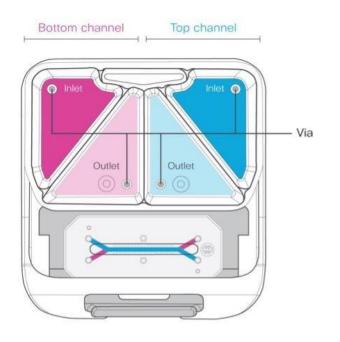
CAUTION

Ensuring successful Pod priming is best practice for successful liquid-liquid connection between the chip and Pod. Failure to do so can cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.

Priming Steps


s The steps for priming Pods are as follows:

The steps	s for priming Pods are as follows:
Step	Action
1	Sanitize the exterior of the Pod packaging and Zoë trays with 70% ethanol, wipe it, and transfer it to the BSC.
2	Open the Pod package and then place the Pods into the trays. Orient the Pods with the reservoirs toward the back of the tray (See Figure 11).
3	Pipette 3 mL of pre-equilibrated, warm media to each inlet reservoir, ensuring to add the appropriate cell type-specific media to the correct pod inlet reservoir.
4	Pipette 300 µL of pre-equilibrated, warm media to each outlet reservoir, directly over each Via (See Figure 12).
5	Bring the trays containing the Pods to the incubator to keep media warm until all Pods have been filled.
6	Slide one tray completely into Zoë so that the handle is facing outward.
7	Run the Prime Cycle on Zoë. (See details on Page 55) Note: It is recommended to run the Prime Cycle on one tray at a time to ensure the prime droplets do not dry while in the incubator.
8	Close the incubator door and allow Zoë to prime the Pods (this process takes approximately 1 minute). Note: Once "Start" is selected, there will be an audible sound as Zoë engages the Pods.
9	Remove the tray from Zoë, and then bring it to the BSC.
10	Verify that all Pods within the tray were fully primed. This is very important for successful chip connection.


Continued on next page

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 57 of 76

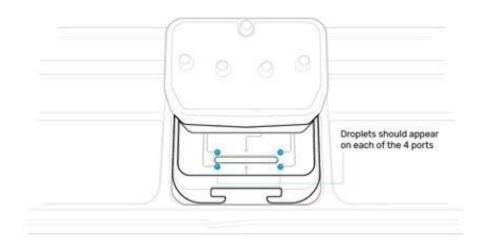
Prime Pods, Continued Figure 11 Pods in tray:

Figure 12

Running the Prime Cycle

The steps for running the Prime Cycle on Zoë are as follows:

Step	Action
1	Rotate the Dial to highlight "Prime" on the display.
2	Use the Dial Button to select "Prime."
3	Rotate the Dial clockwise to highlight "Start."
4	Press the Dial Button again to select "Start," beginning the
	Prime Cycle.
	Note: Once "Start" is selected, there will be an audible
	sound as Zoë engages the Pods.


Continued on next page

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 58 of 76

Prime Pods, Continued

Pod Priming Take out the tray and inspect the top of the Pods (See Figure 13) to Verification verify the presence of small media droplets through the Pod window at all four fluidic ports. lf Then ... Droplets are not visible through Rerun the Prime Cycle on those the top window Pods. If the issue persists, contact Emulate Support. Any outlet port does not show a Ensure step 4 of "Priming Steps" droplet, but the inlet port does has been performed correctly. Any media escaped onto the tray Clean the tray using a wipe (this may occur more often by sprayed with 70% ethanol. the outlet ports)

Figure 13 Top view of chip in Pod with fluidic ports covered with droplets:

Document EP223	Revision A
Date 19-DEC-2022	Page 59 of 76

Connect chips to Pods

The steps for connecting chips to pods are as follows:

Step	Action
1	While holding one chip in the dominant hand (maintaining it in the chip carrier) and one Pod in the non-dominant hand, slide the chip carrier into the tracks on the Pod's underside until the chip carrier has seated fully.
2	Place a thumb on the chip carrier tab. Gently but firmly press the tab in and up to fit into the chip carrier's tab with the Pod.
3	Place the Pod with the connected chip onto the tray.
4	Aspirate any excess media on the chip surface from the Pod window. Additionally, clean all excess media from the trays and bottoms of pods using a wipe sprayed with 70% ethanol.
5	Repeat steps 1 through 4 for each Pod, chip carrier, and tray.
6	Confirm that there is sufficient media in each Pod inlet and outlet reservoir and that the Pod lids are flat and secure.
7	Bring the tray to the incubator until all samples are connected in order to keep the equilibrated media warm.

			Document EP223	Revision A
Ba	sic Research	Kit Protocol	Date 19-DEC-2022	Page 61 of 76
Connect Po	ods to Z	loë		
Overview	mechani forces to of these	Organ-Chips will require cal forces. Zoë enables p be applied via flow and/ forces will be determined desired physiologically re	physiologically relevar or stretch. The type ar d depending on the ce	nt mechanical nd optimal leve Ils of interest
Before	Once all	chips are connected to F		
Running the	Step		Action	
Regulate	1	Place the trays into Zo		
Cycle		Note: One Zoë can ru		
	2	Program the appropriate Organ-Chip culture conditions o Zoë. These conditions will start as soon as the Regulate Cycle is complete. See the example below.		
Example Culture Conditions		e the human Liver-Chip, nd bottom channels, and	set the flow rate to 30	•
Culture	the top a	e the human Liver-Chip,	set the flow rate to 30 I set the stretch paran te Cycle are as follows	neters to 0.
Culture Conditions Steps for Running the Regulate	the top a	e the human Liver-Chip, nd bottom channels, and s for running the Regulat	set the flow rate to 30 d set the stretch paran te Cycle are as follows Action	neters to 0.
Culture Conditions Steps for Running the	the top a The step	e the human Liver-Chip, nd bottom channels, and	set the flow rate to 30 d set the stretch paran te Cycle are as follows Action light the "Regulate" fie	neters to 0.
Culture Conditions Steps for Running the Regulate	the top a The step Step 1	e the human Liver-Chip, nd bottom channels, and s for running the Regular Rotate the Dial to high	set the flow rate to 30 d set the stretch paran te Cycle are as follows Action light the "Regulate" fie o select "Regulate."	neters to 0. s: eld.
Culture Conditions Steps for Running the Regulate	the top a The step Step 1 2 3 4	e the human Liver-Chip, nd bottom channels, and s for running the Regulat Rotate the Dial to high Press the Dial Button t Rotate the Dial clockw Press the Dial Button a Regulate Cycle. Note: Once "Start" is s sound as Zoë engages	set the flow rate to 30 d set the stretch paran <u>te Cycle are as follows</u> <u>Action</u> light the "Regulate" fie o select "Regulate." ise to highlight "Start." again to select "Start" a selected, there will be as the Pods.	and begin the
Culture Conditions Steps for Running the Regulate	the top a The step 1 2 3 4 5	e the human Liver-Chip, nd bottom channels, and s for running the Regulat Rotate the Dial to high Press the Dial Button t Rotate the Dial Button t Rotate the Dial Button a Regulate Cycle. Note: Once "Start" is s sound as Zoë engages At this point, see that t	set the flow rate to 30 d set the stretch paran <u>te Cycle are as follows</u> <u>Action</u> light the "Regulate" fie o select "Regulate." ise to highlight "Start." again to select "Start" a selected, there will be s the Pods. he "Activation" button	and begin the an audible glows blue.
Culture Conditions Steps for Running the Regulate	the top a The step Step 1 2 3 4	e the human Liver-Chip, nd bottom channels, and s for running the Regulat Rotate the Dial to high Press the Dial Button t Rotate the Dial clockw Press the Dial Button a Regulate Cycle. Note: Once "Start" is s sound as Zoë engages	set the flow rate to 30 d set the stretch paran te Cycle are as follows Action light the "Regulate" fie o select "Regulate" fie o select "Regulate." ise to highlight "Start." again to select "Start" a selected, there will be s the Pods. he "Activation" button sts for 2 h. After the cy o flow and/or stretch at	and begin the an audible glows blue. ycle has

Continued on next page

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 61 of 76

Connect Pods to Zoë, Continued

Figure 14	Represent (top) and in			g the Re	gulate Cy	vcle starting
				윰	ZOE 123456	
	Prime Cy	cle				
	Regulate	Cycle	Cancel		1:58:47	
	Flow			Stretch		
	LOCATION	MEDIA	RATE	 PARAMETER	RATE	
	Тор	Fluid	$30 \ \mu \text{L/h}$	Strain	0 %	
	Bottom	Fluid	30 µL/h	 Frequency	0 Hz	
					í	

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 62 of 76

Day 2+: Organ-Chip Culture Maintenance and Sampling

Day 2+ Procedure

Goals

• Maintain chip culture in Zoë over time

• Collect effluent samples for various analyses

Key Steps

Step	See Page
Inspect chips for bubbles and cell morphology	63
Via wash	64
Run 2 nd Regulate Cycle	65
Add stretch (if relevant to model or application)	66
Media replenishment	67
Effluent sampling	68

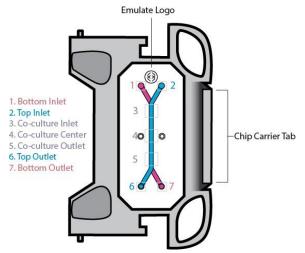
Required Materials

- Chips in Pods
- Cell Culture Medium
- Serological pipettes
- Pipettes with multichannel and filtered tips
- Aspirator and sterile tips
- Cell culture microscope
- 96-well plates or tubes to collect and store effluent

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 63 of 76

Inspect chips for bubbles and cell morphology

Overview	The day after connecting chips and Pods to Zoë, which begins the
	process of Organ-Chip culture, pause Zoë by pressing the silver
	"Activation" button located above the tray bays. This stops flow and
	releases the Pods.


Steps

The steps for inspecting the chips are as follows:

Step	Action
1	Remove the trays and then place them into the BSC.
2	Visually inspect each chip for bubbles and flow issues.
3	Using a microscope, inspect cells in the chips to assess morphology and viability. Capture representative images at 10X or 20X magnification along the length of the chip, as shown in Figure 15.

Note on Imaging For some models, such as the Colon Intestine-Chip and the Liver-Chip, images taken at the co-culture area will be useful in showing the morphology of the cells in the top channel at the interface with the cells in the bottom channel (positions 3,4,5,). However, for other models like the Brain-Chip, the best cell resolution for the top channel will be achieved in the inlet and outlet areas to avoid cell interference from the bottom (positions 2, 6). Bottom channel images should always be acquired in monoculture areas (positions 1,7).

Figure 15 Capture representative images at 10X or 20X magnification at the following locations:

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 65 of 76

Via wash

Steps

On the day after connecting chips and Pods to Zoë, perform a Via wash on each Pod inlet and outlet reservoir to dislodge any bubbles that may be present on top of the Vias:

Step	Action
1	Remove the Pod lids.
2	Using a 200- μ L pipette, pipette 200 μ L of medium directly over the top of the Via.
3	Repeat this wash step for all four reservoirs in each Pod. Note: The Via wash should also be performed on inlet Vias after every media change.

			Document EP223	Revision A
В	Basic Research Kit Protocol			Page 66 of 76
Run 2 nd Re	egulate C	ycle		I
Overview	prevent fl	Via wash, it is recomme ow issues. This step is r erly for long-term Organ	not mandatory but will	
Note on 2 nd Regulate Cycle	In some instances, you may skip the 2 nd Regulate Cycle and move forward with next steps (i.e., short cell viability over time).			
Running 2 nd	Follow th	e steps below to run the	Regulate Cycle agair	ו:
Regulate	Step		Action	
Cycle	1	Rotate the Dial to high	ight the "Regulate" fie	eld.

Dial clockwise to highlight "Start".

"Activation" button will glow blue.

Regulate Cycle.

culture conditions.

2

3

4

Press the Dial Button to select "Regulate," and rotate the

Press the Dial Button again to select "Start" and begin the

Note: Once "Start" is selected, there will be an audible sound as Zoë engages the Pods. At this point, the

The Regulate Cycle lasts 2 hours. After the cycle is

complete, Zoë will begin flow at the preset Organ-Chip

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 67 of 76

Add stretch (if relevant to model or application)

Overview	Cyclical chip stretching can be programmed on Zoë to emulate mechanical forces that naturally occur in the body, such as peristalsis within the intestine and breathing motions within the lungs. The frequency and amplitude of stretching can be adjusted depending on experimental needs (see example below).		
Example		olon Intestine-Chip, we recommend starting with 2% at 0.15 Hz and then increasing to 10% for higher <i>in vivo</i>	
Steps	Follow the	e steps below to add stretch to the culture:	
	Step	Action	
	1	Pause Zoë by pressing the silver "Activation" button.	
	2	Rotate the Dial to highlight the "Stretch" field.	
	3	Press the Dial Button to select "Stretch," and rotate the	
		Dial clockwise to increase stretch to "2%".	
	4	Press the Dial Button to select "Freq." and rotate the Dial	
		clockwise to increase stretch to "0.15 Hz".	
	5	Press the "Activation" button.	

			Document EP223	Revision A
Basic Research Kit Protocol		Date 19-DEC-2022	Page 68 of 76	
Media Repl	enishm	ent		
CAUTION		Failure to replenish media on time will cause air to be introduced into the Pod and chip, which ultimately results in cell death and may cause damage to Zoë Culture Module. Do not fill reservoir past 3.5 mL of the total volume during replenishment.		
Timing	The timing for media replenishment will depend on the specific flow rate used for the experiment. For example, when using a flow rate of 30 μ L / h, 720 μ L of media will take 24 h to flow. We recommend adding a safety factor of 1.5x the expected media volume.			
Note on Culture Media		nat enough culture media to ensure that cultures c		ne Pod inlet
Steps	The step	s for replenishing media	are as follows:	
	Step		Action	
	1	Pause Zoë by pressing		
	2	Remove the trays and		
	3	Refill the Pod media re culture medium. Then, 200 µL of medium dire dislodge any bubbles t	perform a Via wash b ctly over the top of the hat may be present.	e vipetting Via to
	4	Replace the Pod lids a	nd then return trays to	o Zoë.
	5	Ensure media is collec avoiding disturbing the	ted from the indicated	
	6	Dispense the collected plates or tubes (Figure avoid cross contamina	l effluents into the app 17). Change tips betw	•
	7	Cover the Pod and the medium from all your of Note: For more inform protocol".	chips.	C C

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 69 of 76

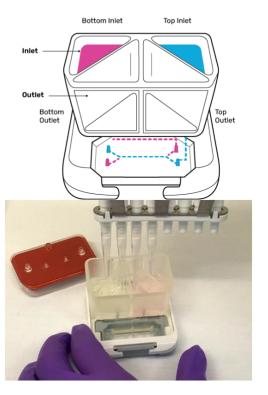
Effluent Sampling

Overview Medium effluent samples can be easily collected from Pod reservoirs over time for many types of analyses such as ELISA, permeability, LCMS, and others. Samples can be collected on 96-well plates or tubes and stored at -80°C or according to specific kit manufacturer's instructions.

Steps

Follow th	e steps below to collect effluent from all reservoirs at once:
Step	Action
1	Pause Zoë by pressing the silver "Activation" button.
2	Remove the trays and place them in the BSC.
3	Remove the Pod lid to collect effluent, one pod at time.
4	Use a standard multichannel pipette; adjust the volume to 50-200 μ L to collect effluent and media from all the four reservoirs simultaneously by placing the pipette tips into the Pods such that one tip is in each reservoir, as depicted in Figure 16.
5	Ensure media is collected from the indicated regions, avoiding disturbing the Pod reservoir Vias.
6	Dispense the collected effluents in appropriate well plates or tubes (Figure 17). Change tips between Pods to avoid cross contamination.
7	Cover the Pod and move to the next, collecting medium from all your chips.
Noto Fo	r more information, check the "Effluent sampling protocol"

Note: For more information, check the "Effluent sampling protocol".


Continued on next page

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 69 of 76

Effluent Sampling, continued

Figure 16Multichannel collection of effluent from the Pod:

TLE		Document EP223	Revision A
Basic Research Kit Protocol		Date 19-DEC-2022	Page 70 of 76
Figure 17	Effluent media dispensed in a	96-well plate:	
	Bottom inlet Bottom outlet Top outlet Top inlet		

TITLE	Document EP223	Revision A
Basic Research Kit Protocol	Date 19-DEC-2022	Page 71 of 76

Day X: Chip Termination

Day X Procedure

Overview	 Once the Organ-Chip experiment is finished, chips can be processed for a variety of analyses, including: Preparation of lysates for RNA-based assays Live staining or fixation for immunofluorescence imaging Harvesting cells for obtaining a single-cell suspension
Information about Endpoint Assays	Please refer to Part VIII for additional information on representative validated endpoint assays.

TITLE Basic Research Kit Protocol	Document EP223	Revision A
	Date 19-DEC-2022	Page 72 of 76

Part VIII: Useful Protocols and References

Protocols

List of Protocols

Protocol Subject	ID Number
Liver-Chip Co-Culture Protocol	EP008
Liver-Chip Tri-Culture Protocol	EP080
Liver-Chip Quad-Culture Protocol	EP079
Colon Intestine-Chip Culture	EP203
Protocol	
Duodenum Intestine-Chip Culture	EP203(2)
Protocol	
Kidney-Chip Co-Culture Protocol	EP169

Guidelines

Guideline Subject	ID Number
Alveolus Lung-Chip Culture	EG180
Guideline	

TITLE Basic Research Kit Protocol	Document EP223	Revision A
	Date 19-DEC-2022	Page 73 of 76

Resources

Endpoint and Readout Protocols

Effluent Assay References		
Document	ID Number	
Effluent Sampling	EP124	
Barrier Function Analysis	EP187	
Protocol		
Albumin Quantification Assay	EP139	

Lysate Isolation		
Document	ID Number	
Isolation and Purification of RNA	EP216	
Samples (Trizol method)		
Cell Lysis for RNA Isolation	EP161	
(Non-trizol method)		
Protein Sample Isolation	EP210	

Imaging Chip References		
Document	ID Number	
Bright Field Phase Contrast	EP123	
Imaging		
Fluorescence Imaging	EP126	
Live Staining of Cells	EP155	
Fixation and	EP137	
Immunofluorescence-IF-Staining		
Immunofluorescence Staining -	EP217	
Colon Intestine-Chip		

73

TITLE Basic Research Kit Protocol		Document EP223	Revision A
		Date 19-DEC-2022	Page 75 of 76
References	5		
Publications	Organ-Specific Publication: Musah, S. et al. "Directed diffe stem cells into mature kidney p Glomerulus Chip". Nature Prot https://www.nature.com/articles	oodocytes and establish ocols. 2018. (13)	

© Emulate, Inc., 2022. All rights reserved.

 $\textit{Emulate}^{\texttt{®}}$ the Emulate logo, Human Emulate System ® and Orb-HM1 ® are registered trademarks of Emulate, Inc.

 $Zo\ddot{e}^{\mathbb{R}}$, S-1^{\mathbb{R}}, Chip-S1^{\mathbb{R}}, Pod^{\mathbb{R}}, ER-1^{\mathbb{M}} and ER-2^{\mathbb{M}} are trademarks of Emulate, Inc.

Steriflip[®] is a registered trademark of Merck KGaA, Darmstadt, Germany.

Fungin[™] is a trademark of Invivogen Corporation.

The technology disclosed in this document may be covered by one or more patents or patent applications owned by or licensed to Emulate, Inc. No license is granted herein. You are solely responsible for determining whether you have all intellectual property rights that are necessary for your intended use of Emulate products or protocols and whether you are required to obtain any additional intellectual property rights from a third party. Further information is available by contacting Emulate.