Liver-Chip: A Model for Understanding Diet-Induced Liver Disease and Drug Efficacy Assessment

Dwayne E. Carter (1), Griffesi Andriani (2), Sushma Jadallahangari (2), Sauveur Jeanty (3), John Saulc (1), Sannidhi Joshipura (2), Jamie Bates (2), Saritha Kusari (2), Diego Miranda (2), Ayse Oksesi-Armlovich (2), Archana Vijayakumar (2), Kyung-Jin Jang (2), Geraldine A. Hamilton (2), Katia Karalis (1), and James L. Trevasik (2)

Abstract

Background and Aim: Nonalcoholic fatty liver disease (NAFLD) is a progressive condition initially characterized by increased lipid accumulation in the liver (steatosis) and can develop into nonalcoholic steatohepatitis (NASH). There is an unmet need for a human-relevant in vitro model to enable successful development of therapies. Methods: To address this unmet need, we utilized our human Liver-Chip, which retains key characteristics of native liver function over long-term cultures. To induce steatosis, chips were treated with saturated fatty acids (palmitate) or unsaturated fatty acids (stearate), alone or in combination. TGF-beta was used as a positive control for hepatocellular injury and stellate cell activation. To assess therapeutic efficacy against steatosis, chips were treated for two days after initiating steatosis (therapeutic), or co-treated (prophylactic) with a liver-targeted analogue of fibrostatin, a known inhibitor of αvβ3 integrin (ACC)-I. Morphological evaluation of the hepatocytes and adipocytes was carried out to evaluate steatosis. Quantification of triglycerides released in the media was used to evaluate lipid removal, and alpha-SMA staining was used to assess stellate cell activation. Results: We demonstrated induction of steatosis in hepatocytes in a concentration-dependent manner following continuous exposure to palmitate, or in combination, with a fourfold decrease in fatty acids as well as levels of triglycerides released in a relevant human in vivo model. Administration of TGF-beta resulted in increased stellate cell activation, hepatocellular injury, and lipid accumulation compared to the vehicle controls. Chips treated with the ACC-I demonstrated a concentration-dependent reduction in lipid accumulation in both the therapeutic and prophylactic paradigms when compared to steatosis-induced controls. Conclusions: In this study, we provide preliminary data supporting the potential application of the Liver-Chip for modeling NAFLD-like phenotypes and conducting human-relevant, mechanistic, efficacys, and safety assessments in vitro.

Combining Design, Engineering, and Biology

Recreating the Cellular Microenvironment in Our Chips

Liver-Chip

- Extracellular matrix and cell interactions
- Tissue-tissue interactions
- Hepatocyte and cytoarchitecture
- Mechanical forces
- Dynamic system – flow
- Resident or circulating immune cells

Liver-Chip: A Model for Understanding Diet-Induced Liver Disease and Drug Efficacy Assessment

Results

Fatty Acid Treatment Schematic

Triglyceride Export in Liver-Chip

Hepatic Stellate Cell Activation in Liver-Chip

Compound Efficacy Assessment in Liver-Chip

Conclusions

In this study, we provide preliminary data supporting the potential application of the Liver-Chip for modeling NAFLD-like phenotypes and conducting human-relevant, mechanistic, efficacy, and safety assessments in vitro.

© 2020 Emulate, Inc | 27 Dryock Ave, 5th Floor | Boston, MA 02210