

Save time. Discover more. Join the future.

Emulate Organ-on-a-Chip Technology

Complete Organ-Chip solutions to fast-track your drug discovery & development programs

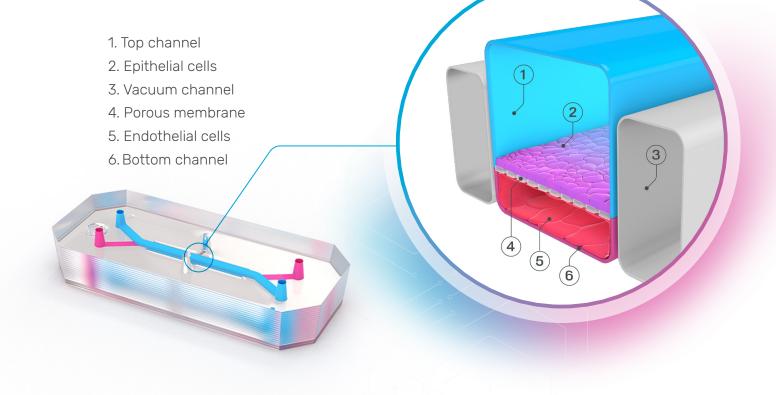
Table of Contents

Technology Overview

- 3 Introduction to Organ-Chips
- 4 The Importance of Flow, Stretch, and Co-Culture
- 6 Key Applications

Emulate Product Offerings

- 8 Organ-Chip Models & Platforms
- 10 Zoë-CM2[®] Culture Module
- 12 AVA[™] Emulation System
- 19 Technical Specifications

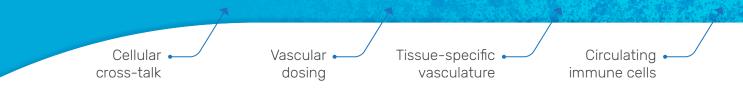


What are Organ-Chips?

Organ-on-a-Chip technology recreates the functional unit of an organ using living human cells and an organ-specific microenvironment, giving researchers a real-time view of human biology. These small devices consist of two parallel channels, which can be seeded with multiple human-relevant cell types—including primary cells, iPSCs, organoids, and immune cells—and are separated by a thin, porous membrane that allows cell-cell communication across a tissue-vascular interface.

A defining advantage of Organ-Chips is the precise control users have over biomechanical forces. When subjected to media flow and cyclic strain, cells experience the same stresses they would in the body, including intestinal peristalsis, breathing, and vascular flow. Collectively, this organ-specific microenvironment drives more *in vivo*-relevant gene expression, morphology, and function than standard culture methods, enabling deeper insights into human biology.

Schematic of Chip-S1 Stretchable Chip, an Organ-Chip consumable. Organ-Chip consumables are cell-agnostic and can be seeded with virtually any cell type.

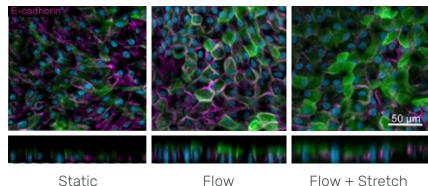

Physiologically relevant culture conditions...

Cyclic

stretch •

Tissue-specific

ECM •

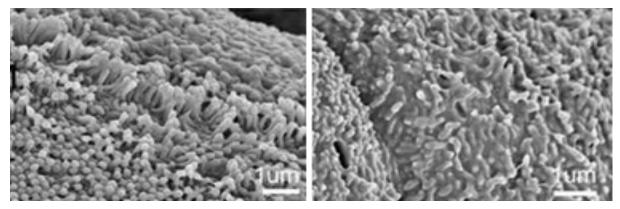

Fluid

flow •

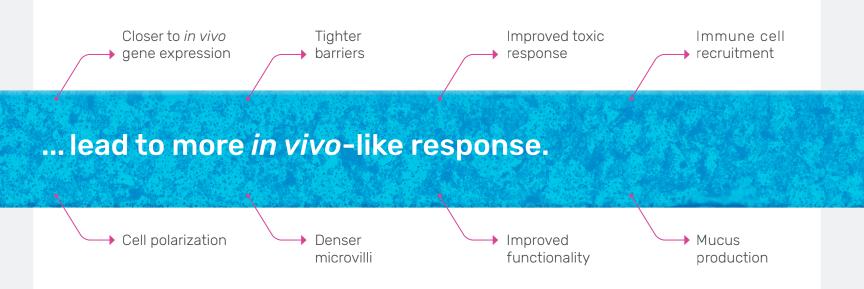
Improved cell maturation

Flow & stretch improve the maturation of epithelial cells, including:

- Improved cell polarization
- · Increased cell height
- Increased microvilli density

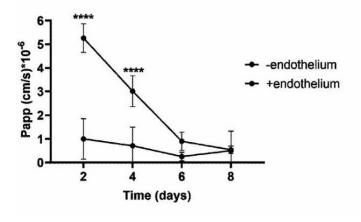

Static

Flow + Stretch


Flow and stretch increase epithelial cell height and microvilli formation in the organoid-derived Duodenum Intestine-Chip.

+endothelium

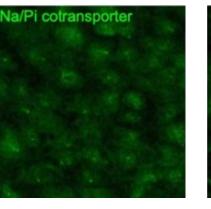
-endothelium



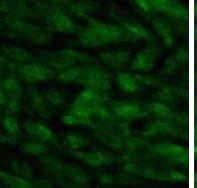
Endothelial co-culture increases the density of microvilli in the Colon Intestine-Chip.

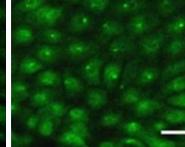
Improved tissue functionality

Apparent Permeability 3kDa Dextrran Cascade Blue


Co-culture with organ-specific vasculature improves the functionality of the tissue, such as:

• Improved barrier formation


Co-culture


- Closer-to-*in vivo* expression of relevant transporters
- Physiologically relevant biomarker production

Monoculture

RPTECs

RPTECs + HUVECs

RPTECs + RMVECs

Co-culture with organ-specific vasculature (HRMECs) improves Na/Pi cotransporter expression in the Proximal Tubule Kidney-Chip.

5

From early screening to clinical translation

Organ-Chips are accelerating safer, more effective therapies across a multitude of application areas.

Cancer

Create complex models of epithelia, stroma and vasculature to interrogate mechanisms of metastasis and better understand cancer progression.

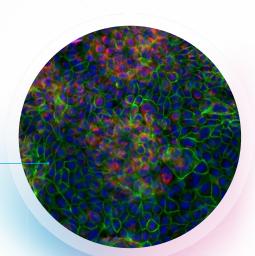
Colorectal Cancer-on-a-Chip Ellison Institute, *iScience (2021)*

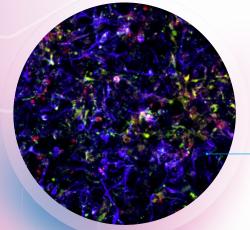
Vaccine Evaluation

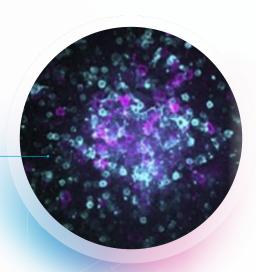
Recapitulate human vaccine and adjuvant responses in lymphoid tissues to support vaccine boosting strategies

> **Lymphoid Follicle-Chip** Institut Pasteur, J Exp Med (2024) Wyss Institute, Advanced Science (2022)

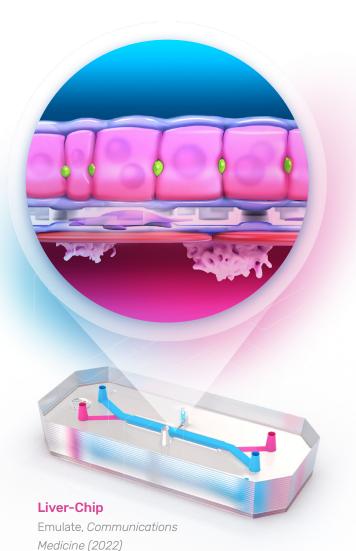
Blood-Brain Barrier Screening

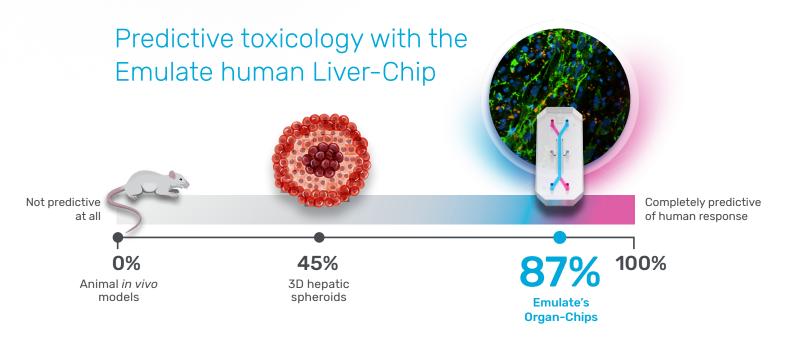

Screen for therapeutics that can cross the blood-brain barrier *in vivo* and capture cellspecific contributions in human diseaseassociated pathology


BBB-Chip Regeneron, *Pharmaceutics (2024)*


Immunotherapy Safety Testing

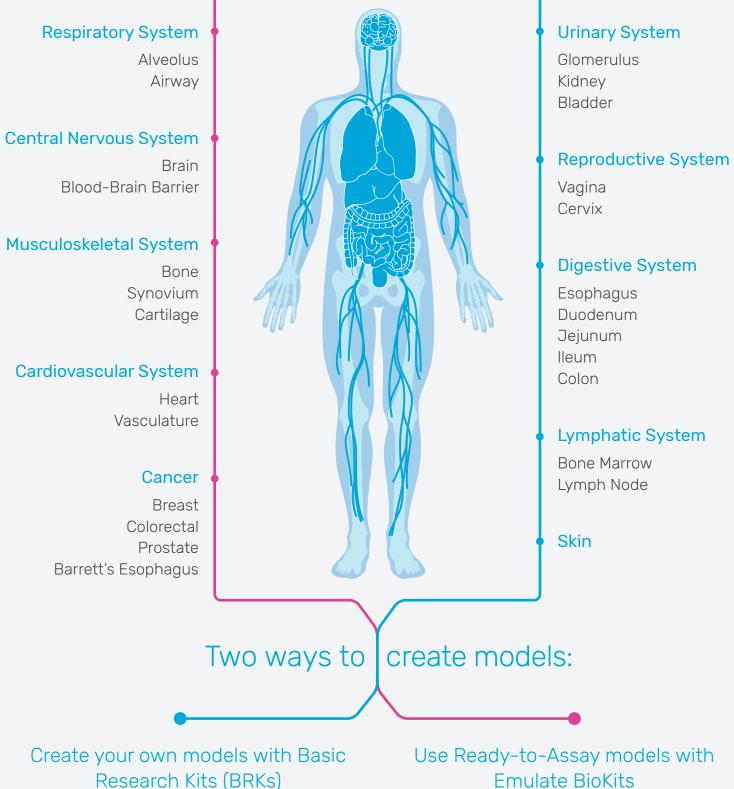
Predict on-target, off-tumor toxicities of immuno-therapeutics such as monoclonal antibodies and T-cell bispecific antibodies


Lung-Chip, Duodenum & Colon Intestine-Chips Roche & Emulate, *eLife (2021)*


Predictive Toxicology

Drug-induced liver injury (DILI) remains a leading reason for clinical trial failures and withdrawal from the market. But it doesn't have to be.

In the largest study of its kind, the Emulate human Liver-Chip S1 was able to correctly identify 87% of the tested drugs that caused drug-induced liver injury in patients-despite passing animal testing evaluations¹.


More importantly, if the Liver-Chip had been used to screen these drugs, *242 lives could have been saved*.

Today, the Liver-Chip S1 is on track for FDA approval in the ISTAND program. Upon completion of the program, the Liver-Chip S1 will be approved for assessing the risk of DILI in a drug's investigational new drug (IND) submission.

The Emulate human Liver-Chip was able to correctly identify 87% of the tested drugs that caused drug-induced liver injury in patients despite passing animal testing evaluations.

30+ published organ models across the scientific community

BRKs contain blank Organ-Chip consumables for users to create custom Organ-Chip models with their own cell sources. BRKs are available for all Emulate Organ-Chip consumables, including Chip-Array, Chip-S1, Chip-R1, and Chip-A1.

Emulate BioKits

Emulate BioKits provide the components needed to create fully functional Organ-Chip models, including pre-qualified cells, Organ-Chip consumables, and validated protocols, with guarantees on characterization and functionality.

Organ-Chip systems to power drug discovery

Sophisticated and user-friendly platforms that make it easy to incorporate Organ-on-a-Chip technology across the drug discovery & development pipeline.

AVA[™] Emulation System

Capable of 96 Organ-Chip samples per run, AVA unleashes unprecedented experimental power to rank order lead candidates and optimize the preclinical safety and efficacy of your drug candidates. 0

0

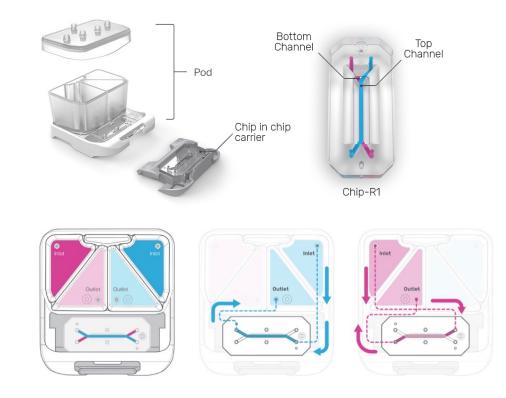
(8) emulate

0

0

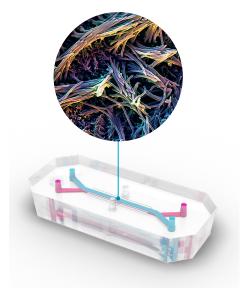
Zoë-CM2® Culture Module

A versatile system for model development & target validation


The Zoë-CM2 Culture Module provides a seamless interface for culturing up to 12 Organ-Chips at a time. As an open platform with multiple Organ-Chip consumable designs, Zoë enables researchers to build a wide variety of organ models for myriad applications—from disease modeling, to target validation, to drug candidate safety and efficacy evaluation.

Key features	Media Flow	Cyclic Stretch	Bubble Reduction	+ U Versatile Biological Modeling
Zoë at a glance	Organ-Chip capacity		12	
	Independent flow in both channels		Yes	
	Stretch		Yes (Chip-S1 and Chip-A1)
	Tissue-vascular interface		Yes	
	Air-liquid interface		Yes	
	Compound dosing options		Vascular dosing via Pod Epithelial dosing via Pod Direct topical treatment (Chip-A1 only) Direct aerosolized treatment (Chip-A1 only)	
	Maximum flow rate		1,000 μl/hr (Chip-S1 and Chip-A1) 2,000 μl/hr (Chip-R1)	

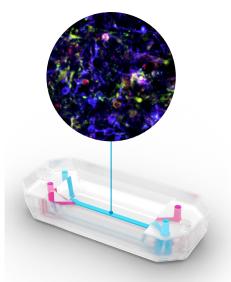
Chips & Pods


Each Chip connects to a Pod which, through Zoë, enables automated control of media flow and dosing while maintaining ease of portability for routine microscopy observation. The Pod stores 4 mL of media for each microfluidic channel, enabling automated media flow for up to 5 days. Media effluent can be easily collected from the outlet reservoirs for downstream analysis.

Zoë Organ-Chip consumables

Chip-S1[®] Stretchable Chip

The pioneering Organ-Chip design that started a revolution in humanrelevant *in vitro* modeling

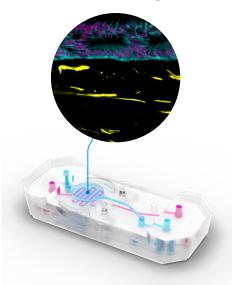


Recommended biological models:

• Epithelial-endothelial models that require stretch

Chip-R1[™] Rigid Chip

Improve precision in ADME and toxicology applications with a lowdrug-absorption profile



Recommended biological models:

- Epithelial-endothelial models that do not require stretch
- Models that will be treated with lipophilic small molecules

Chip-A1[™] Accessible Chip

Model complex 3D tissues with the ability to directly apply topical or aerosolized drugs

Recommended biological models:

- ECM gel-based models
- Stratified or 3D models that require direct epithelial access for compound/drug exposure

AVA[™] Emulation System

A high-throughput Organ-Chip platform that generates human-relevant data at scale

The AVA Emulation System is our groundbreaking "Ad Vivo Architect," bridging the translation gap by merging the throughput of *in vitro* studies with the fidelity of *in vivo* models to create more human-relevant biology at scale.

By supporting up to 96 individual Organ-Chip samples ("Emulations") per experiment, AVA delivers high-powered insights that enable faster, more confident decision-making in drug development.

all while seamlessly controlling

temperature, humidity, and CO₂

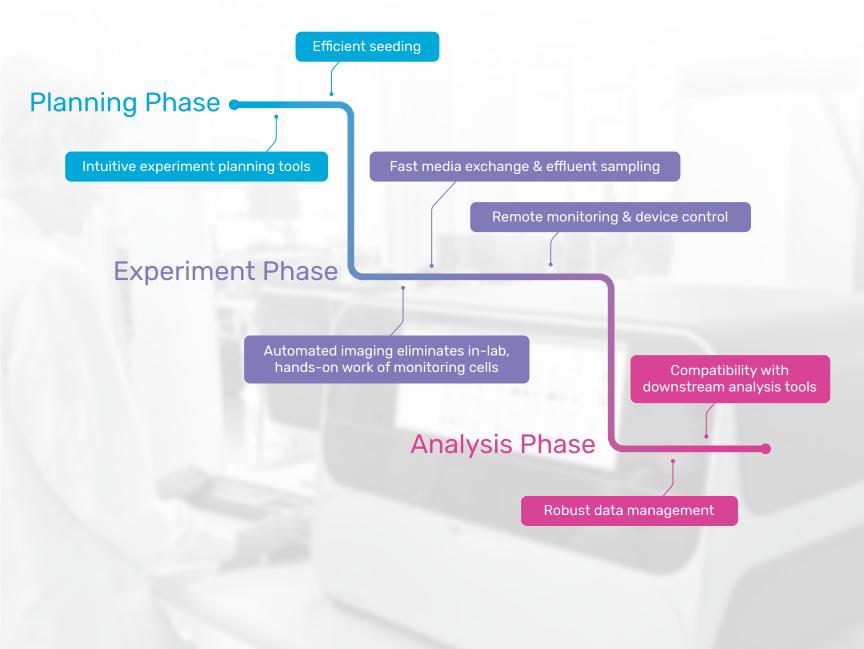
3-channel fluorescence imaging, AVA's fit-for-purpose microscope automatically acquires images of each Emulation under flow throughout the course of the experiment to capture tissue morphology and biomarker expression levels over time

hands-on time

Key Benefits

High throughput

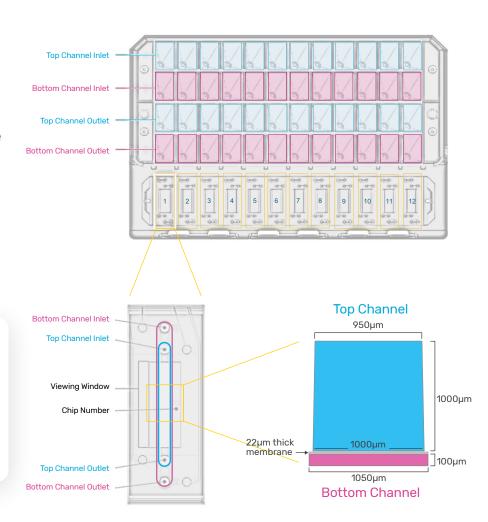
Run up to 96 independent samples in a single experiment



4X reduction in cost of consumables & 50% reduction in cells & media per Emulation*

60% reduction in hands-on, in-lab time*

Workflow improvements at every stage



Chip-Array brings the proven low-drugabsorbing architecture of the Chip-R1[™] Rigid Chip into a 12-Chip parallel format, letting you run more conditions in every experiment—without compromising data quality. Housed in an SBS-compatible plate footprint and engineered for seamless integration with automated liquid handlers, robotic arms, and multichannel pipettes, Chip-Array accelerates throughput while maintaining the physiological fidelity that defines Organ-on-a-Chip technology.

What is an "Emulation"?

An Emulation is an independent Organ-Chip sample within a Chip-Array. Each Chip-Array supports up to 12 Emulations.

Engineered for streamlined workflows & automation

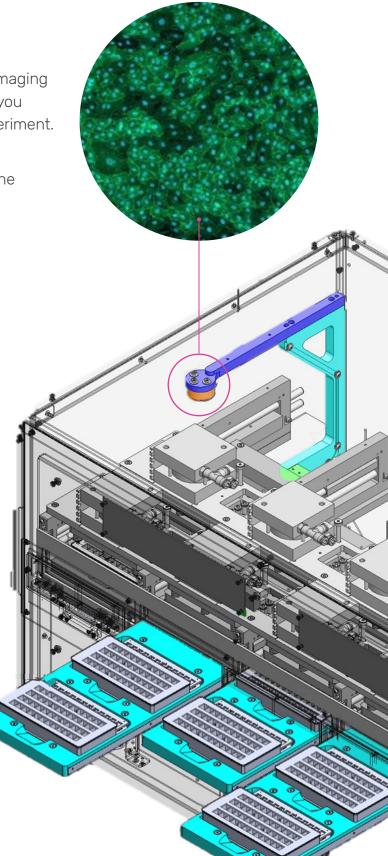
Scale up throughput while saving time. AVA was designed with automation-friendly features so that you can spend less time at the bench and more time progressing science.

Automated imaging

AVA's software lets you fully customize your automated imaging routines. The intelligent auto-focus feature ensures that you capture the most important images throughout your experiment.

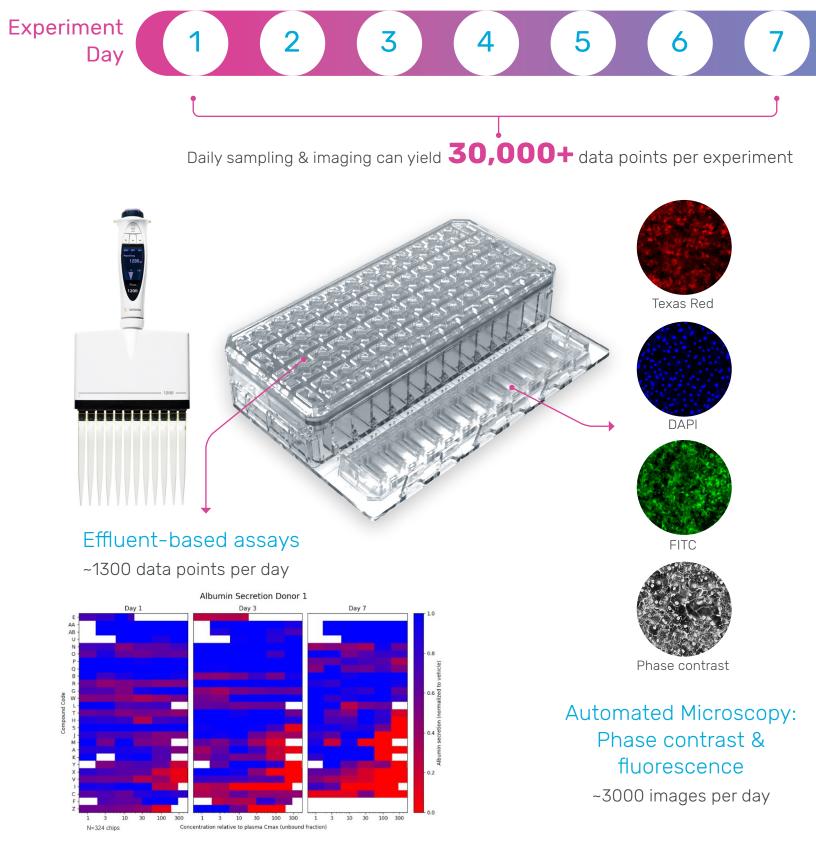
Using the live imaging feature, you can quickly view any emulation in real-time, providing immediate insight into the state of your study.

Remote monitoring & data management

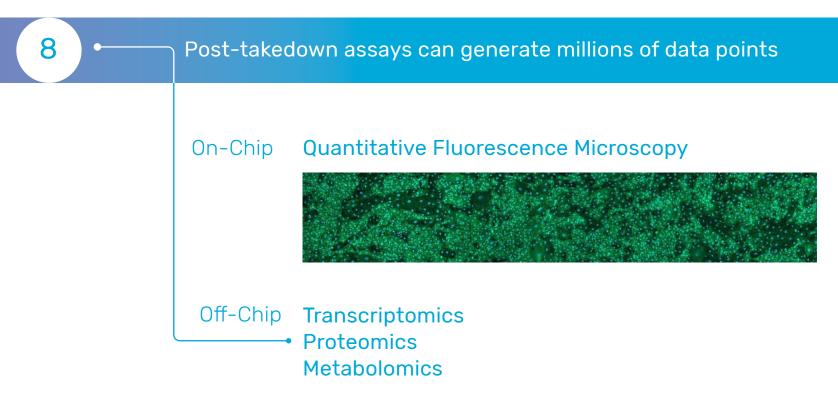

Access your experiment data from anywhere.

When configured with network access, you can remotely view & engage with your AVA using a thirdparty application like Microsoft Remote Desktop™, as well as store data in your preferred shared directory to ensure data is secure and accessible.

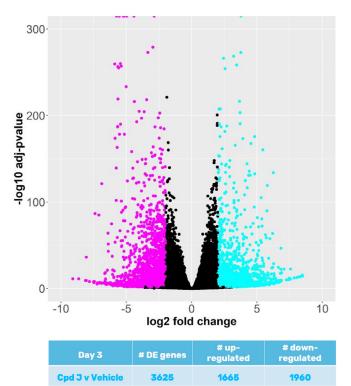
Standard well plate footprint with multichannel pipette compatibility

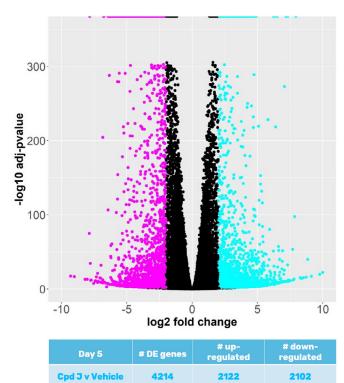

Make short work of seeding, media exchange, and effluent sampling.

Chip-Array features the same footprint as a 96-well plate, making it compatible with lab automation equipment such as multichannel pipettes, robotic arms, and liquid handlers.


AVA enables multi-modal data generation to support AI training – from thousands to millions of data points

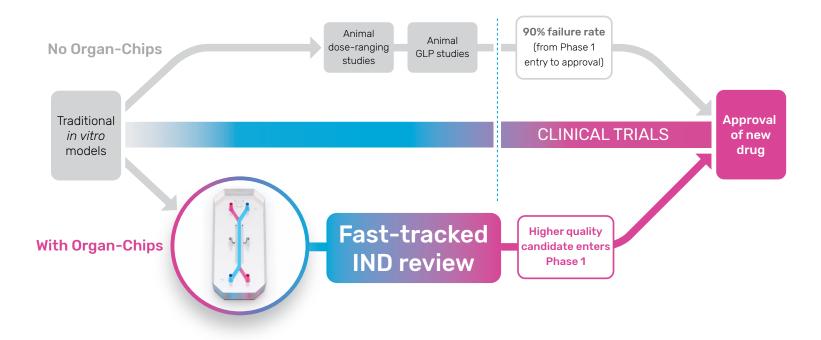
Experimentation phase on instrument




Endpoint assays & analysis

Day 3, Compound J

Day 5, Compound J


Now is the time to adopt Organ-on-a-Chip Technology

The future of preclinical safety is clear: **by 2030, the FDA expects animal studies to be the** *exception* rather than the norm for pre-clinical safety/toxicity testing¹.

Organ-Chips are the human-relevant alternative the agency is actively encouraging today. Adopting Emulate's validated Organ-on-a-Chip technology doesn't just keep you ahead of this mandate; it can **fast-track your IND review**¹.

Backed by a uniquely close collaboration with the FDA—including the first and only Organ-Chip accepted into the ISTAND program for DILI evaluation²—Emulate is the partner positioned to help you meet tomorrow's regulatory standards, accelerate development timelines, and bring safer therapies to patients faster.

Learn more about the rapidly evolving regulatory landscape through our website.

^{1.} https://www.fda.gov/media/186092/download

^{2.} As of June 2025: https://www.fda.gov/drugs/drug-safety-and-availability/fdas-istand-pilot-program-accepts-submission-firstorgan-chip-technology-designed-predict-human-drug

Platform Specifications

·		AVA	Zoë	
Culture	Flow range	0 μL/h, or 10-2,000 μL/h ± 10%*	0 μL/h, or 10-1,000 μL/h ± 10%*	
	Stretch range	N/A	0–12%	
	Stretch frequency	N/A	0.0-0.40 Hz	
	Temperature	37°C	(Requires separate incubator)	
	Humidity	80-95%	(Requires separate incubator)	
	CO ₂	5%	(Requires separate incubator)	
		*Flow tolerances may vary.	*Flow tolerances may vary.	
Microscope	Objective	10X air	N/A	
	Digital zoom	200%	N/A	
	Light source	LED	N/A	
	Camera	CMOS sensor, 8.3 MP resolution	N/A	
	Imaging modalities	Phase contrast, 3-channel fluorescence	N/A	
	Filters	 Blue (e.g., DAPI): Excitation 370-410 nm; Emission 429-462 nm Green (e.g., FITC): Excitation 473-491 nm; Emission 502-561 nm Red (e.g., Texas Red): Excitation 580-598 nm; Emission 612-680 nm 	N/A	
	Image format	TIFF	N/A	
General	Overall size	762 x 445 x 559 mm (30 x 17.5 x 22")	178 x 218 x 429 mm (7.0 x 8.6 x 16.9″)	
	Weight	63.5 kg (140 lbs)	10.9 kg (24 lbs)	
	Instrument rating	63.5 kg (140 lbs) 24 VDC	10.9 kg (24 lbs) 24 VDC	
Operating requirements	0			
	Instrument rating	24 VDC	24 VDC	
Operating requirements Recommended computer specifications	Instrument rating Gas input composition	24 VDC 100% CO ₂	24 VDC 100% CO ₂	

Consumable Specifications

	AVA Emulation System	Zoë Culture Module		
	Chip-Array	Chip-S1	Chip-R1	Chip-A1
Bottom channel height	100 µm	200 µm	100 µm	200 µm
Top channel height	1,000 µm	1,000 µm	1,000 µm	3,700 µm
Maximum bottom channel shear	2.3 dyn/cm ²	0.3 dyn/cm ²	2.3 dyn/cm ²	0.75 dyn/cm ²
Maximum flow rate	2,000 µL/h	1,000 µL/h	2,000 µL/h	1,000 µL/h
Membrane pore size	3 µm	7 µm	3 µm	7 µm
Membrane thickness	22 µm	50 µm	22 µm	50 µm
Imaging distance from bottom of chip to top of membrane	172 µm	850 µm	172 µm	900 µm
Co-culture surface area	12.8 mm ²	17.1 mm ²	16.6 mm ²	15.2 mm ²
Chip material	Low drug-absorbing rigid plastic with a polycarbonate tissue culture membrane	PDMS	Low drug-absorbing rigid plastic with a polycarbonate tissue culture membrane	PDMS
Emulations per chip	12	1	1	1
Media reservoir volume	1.3 mL	4.2 mL	4.2 mL	4.2 mL
Independent flow in both channels	Yes	Yes	Yes	Yes
Stretch	No	Yes	No	Yes
Direct access to top channel	No	No	No	Yes
Air-liquid interface	Yes	Yes	Yes	Yes
Tissue-vascular interface	Yes	Yes	Yes	Yes

emulatebio.com

Emulate, Inc.

27 Drydock Ave, 5th floor Boston, MA 02210

+1.844.902.4477 info@emulatebio.com

emulatebio.com